Page 140 - Advances in Biomechanics and Tissue Regeneration
P. 140

136                      7. MULTISCALE NUMERICAL SIMULATION OF HEART ELECTROPHYSIOLOGY

           [34] D.D. Streeter, C. Ramon, Muscle pathway geometry in the heart wall, J. Biomech. Eng. 105 (4) (1983) 367–373.
           [35] P.A. Helm, A Novel Technique for Quantifying Variability of Cardiac Anatomy Application to the Dyssynchronous Failing Heart (Ph.D. thesis),
               Johns Hopkins University, 2005.
           [36] I. LeGrice, P. Hunter, A. Young, B. Smaill, The architecture of the heart: a data-based model, Philos. Trans. Math. Phys. Eng. Sci. 359 (1783) (2001)
               1217–1232.
           [37] A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol.
               117 (4) (1952) 500–544.
           [38] P. Stewart, O.V. Aslanidi, D. Noble, P.J. Noble, M.R. Boyett, H. Zhang, Mathematical models of the electrical action potential of Purkinje fibre
               cells, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367 (1896) (2009) 2225–2255.
                                                          +
           [39] M.M. Maleckar, J.L. Greenstein, W.R. Giles, N.A. Trayanova, K current changes account for the rate dependence of the action potential in the
               human atrial myocyte, Am. J. Physiol. Heart C. 297 (2009) 1398–1410.
           [40] A. Nygren, C. Fiset, L. Firek, J.W. Clark, D.S. Lindblad, R.B. Clark, W.R. Giles, Mathematical model of an adult human atrial cell: the role of
                +
               K currents in repolarization, Circ. Res. 82 (1) (1998) 63–81.
           [41] K.H. ten Tusscher, D. Noble, P.J. Noble, A.V. Panfilov, A model for human ventricular tissue, Am. J. Physiol. Heart Circ. Physiol. 286 (4) (2004)
               1573–1589.
           [42] T. O’Hara, L. Virág, A. Varró, Y. Rudy, Simulation of the undiseased human cardiac ventricular action potential: model formulation and exper-
               imental validation, PLoS Comput. Biol. 7 (5) (2011).
           [43] J. Carro, J.F. Rodriguez, P. Laguna, E. Pueyo, A human ventricular cell model for investigation of cardiac arrhythmias under hyperkalaemic
               conditions, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369 (2011) 4205–4232.
           [44] C.H. Luo, Y. Rudy, A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes, Circ.
               Res. 74 (6) (1994) 1071–1096.
           [45] C.H. Luo, Y. Rudy, A dynamic model of the cardiac ventricular action potential. II. After depolarizations, triggered activity, and potentiation,
               Circ. Res. 74 (6) (1994) 1097–1113.
           [46] T.R. Shannon, F. Wang, J. Puglisi, C. Weber, D.M. Bers, A mathematical treatment of integrated Ca dynamics within the ventricular myocyte,
               Biophys. J. 87 (2004) 3351–3371.
           [47] B. Alberts, D. Bray, J. Lewis, M. Raff, R. Keith, J.D. Watson, Biologia Molecular de la Celula, Omega S.A., 2002.
           [48] J.M.J. Ferrero, J. Saiz, J.M. Ferrero, N.V. Thakor, Simulation of action potentials from metabolically impaired cardiac myocytes: role of
                          +
               ATP-sensitive K current, Circ. Res. 79 (2) (1996) 208–221.
           [49] G. Strang, On the construction and comparison of difference schemes, SIAM J. Num. Anal. 5 (3) (1968) 506–517.
           [50] J. Sundnes, G.T. Lines, A. Tveito, An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the
               torso, Math. Biosci. 194 (2) (2005) 233–248.
           [51] T.J.R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, Dover Publications, 2000.
           [52] O.C. Zienkiewicz, R.L.L. Taylor, J.Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, seventh ed., Butterworth-Heinemann, 2013.
               vol. 1.
           [53] B. Rodriguez, N. Trayanova, D. Noble, Modeling cardiac ischemia, Ann. N. Y. Acad. Sci. 1080 (2006) 395–414.
           [54] J.M.J. Ferrero, B. Trenor, B. Rodriguez, J. Saiz, Electrical activity and reentry during acute regional myocardial ischemia: insights from simu-
               lations, Int. J. Bifurc. Chaos 13 (2003) 3703–3715.
           [55] B. Tice, B. Rodriguez, N. Trayanova, Arrthythmogenicity of transmural heterogeneities in a realistic model of regional ischemia, Heart Rhythm.
               2 (5) (2005) S261.
           [56] B. Rodriguez, B.M. Tice, J.C. Eason, F. Aguel, N. Trayanova, Cardiac vulnerability to electric shocks during phase 1a of acute global ischemia,
               Heart Rhythm 1 (6) (2004) 695–703.
           [57] D.L. Weiss, M. Ifland, F.B. Sachse, G. Seemann, O. Dossel, Modeling of cardiac ischemia in human myocytes and tissue including spatiotem-
               poral electrophysiological variations, Biomed. Tech. 54 (3) (2009) 107–125.
           [58] S. Dutta, A. Minchol  e, E. Zacur, A. Quinn, P. Taggart, B. Rodríguez, Early afterdepolarizations promote transmural reentry in ischemic human
               ventricle with reduced repolarization reserve, Prog. Biophys. Mol. Biol. 120 (2016) 236–248.
           [59] A. Mena Tobar, J.M. Ferrero, J.F. Rodríguez, GPU accelerated solver for nonlinear reaction-diffusion systems. Application to the electrophys-
               iology problem, Comput. Phys. Commun. 196 (2015) 280–289.
           [60] T. Furukawa, S. Kimura, N. Furukawa, A.L. Bassett, R.J. Myerburg, Role of cardiac ATP-regulated potassium channels in differential responses
               of endocardial and epicardial cells to ischemia, Circ. Res. 68 (6) (1991) 1693–1702.
           [61] C.G. Nichols, C. Ripoll, W.J. Lederer, ATP-sensitive potassium channel modulation of the guinea pig ventricular action potential and contrac-
               tion, Circ. Res. 68 (1) (1991) 280–287.
                                                                     +
                                                    +
           [62] J.N. Weiss, N. Venkatesh, S.T. Lamp, ATP-sensitive K channels and cellular K loss in hypoxic and ischaemic mammalian ventricle, J. Physiol.
               447 (1992) 649–673.
           [63] P.E. Light, J.M. Cordeiro, R.J. French, Identification and properties of ATP-sensitive potassium channels in myocytes from rabbit Purkinje fibres,
               Cardiovasc. Res. 44 (2) (1999) 356–369.
           [64] A. Michailova, W. Lorentz, A. McCulloch, Modeling transmural heterogeneity of KATP current in rabbit ventricular myocytes, Am. J. Physiol.
               Cell Physiol. 293 (2) (2007) 542–557.
           [65] K. Gima, Y. Rudy, Ionic current basis of electrocardiographic waveforms: a model study, Circ. Res. 90 (8) (2002) 889–896.
           [66] B.J. Boukens, M.R. Walton, V.M. Meijborg, R. Coronel, Transmural electrophysiological heterogeneity, the T-wave and ventricular arrhythmias,
               Prog. Biophys. Mol. Biol. 122 (2016) 202–214.
           [67] A.V. Glukhov, V.V. Fedorov, Q. Lou, V.K. Ravikumar, P.W. Kalish, R.B. Schuessler, N. Moazami, I.R. Efimov, Transmural dispersion of depo-
               larization in failing and non-failing human ventricle, Circ. Res. 106 (2010) 981–991.
           [68] A. Minchol  e, E. Pueyo, J.F. Rodríguez, E. Zacur, M. Doblar  e, P. Laguna, Quantification of restitution dispersion from the dynamic changes of the
               T-wave peak to end, measured at the surface ECG, IEEE Trans. Biomed. Eng. 58 (5) (2011) 1172–1182.






                                                       I. BIOMECHANICS
   135   136   137   138   139   140   141   142   143   144   145