Page 142 - Advances in Biomechanics and Tissue Regeneration
P. 142

138                      7. MULTISCALE NUMERICAL SIMULATION OF HEART ELECTROPHYSIOLOGY

           [103] J.P. Mills, L. Qie, M. Dao, C.T. Lim, S. Suresh, Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers,
                MCB 1 (3) (2004) 169–180.
           [104] J.T. Hansen, M.K. Bruce, Nettre’s Atlas of Human Physiology, WB Saunders Company, 2002.
           [105] S.A. Niederer, E. Kerfoot, A.P. Benson, Verification of cardiac tissue electrophysiology simulators using an N-version benchmark, Philos.
                Trans. R. Soc. A. 369 (1954) (2011) 4331–4351.
           [106] M. Pennacchio, V. Simoncini, Efficient algebraic solution of reaction-diffusion systems for the cardiac excitation process, J. Comput. Appl.
                Math. 145 (1) (2002) 49–70.
           [107] M. Potse, B. Dube, J. Richer, A. Vinet, R. Gulrajani, A comparison of monodomain and bidomain reaction-diffusion models for action potential
                propagation in the human heart, IEEE Trans. Biomed. Eng. 53 (12) (2006) 2425–2435.
           [108] J.L. Puglisi, D.M. Bers, LabHEART: an interactive computer model of rabbit ventricular myocyte ion channels and Ca transport, Am. J. Physiol.
                Heart C 281 (6) (2001) C2049–C2060.
           [109] Z. Qu, J. Kil, F. Xie, A. Garfinkel, J.N. Weiss, Scroll wave dynamics in a three-dimensional cardiac tissue model: roles of restitution, thickness,
                and fiber rotation, Biophys. J. 78 (6) (2000) 2761–2775.
                                                             +
           [110] Z. Qu, H.S. Karagueuzian, A. Garfinkel, J.N. Weiss, Effects of Na channel and cell coupling abnormalities on vulnerability to reentry: a sim-
                ulation study, Am. J. Physiol. Heart Circ. Physiol. 286 (4) (2004) H1310–H1321.
           [111] P.L. Rensma, M.A. Allessie, W.J. Lammers, F.I. Bonke, M.J. Schalij, Length of excitation wave and susceptibility to reentrant atrial arrhythmias
                in normal conscious dogs, Circ. Res. 62 (2) (1988) 395–410.
           [112] B.J. Roth, An S1 gradient of refractoriness is not essential for reentry induction by an S2 stimulus, IEEE Trans. Biomed. Eng. 47 (6) (2000)
                820–821.
           [113] S. Rush, H. Larsen, A practical algorithm for solving dynamic membrane equations, IEEE Trans. Biomed. Eng. 25 (4) (1978) 389–392.
           [114] B. Sakmann, G. Trube, Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea-pig heart,
                J. Physiol. 347 (1) (1984) 641–657.
           [115] H.I. Saleheen, K.T. Ng, A new three-dimensional finite-difference bidomain formulation for inhomogeneous anisotropic cardiac tissues, IEEE
                Trans. Biomed. Eng. 45 (1) (1998) 15–25.
           [116] J.A. Trangenstein, C. Kim, Operator splitting and adaptive mesh refinement for the Luo-Rudy I model, J. Comput. Phys. 196 (2) (2004) 645–679.
           [117] E.J. Vigmond, L.J. Leon, Computationally efficient model for simulating electrical activity in cardiac tissue with fiber rotation, Ann. Biomed.
                Eng. 27 (2) (1999) 160–170.
           [118] C.H. Wang, A.S. Popel, Effect of red blood cell shape on oxygen transport in capillaries, Math. Biosci. 116 (1993) 89110.
           [119] A.L. Wit, M.J. Janse, The Ventricular Arrhythmias of Ischemia and Infarction: Electrophysiological Mechanisms, Futura, Mount Kisco, NY,
                1993.
           [120] G.X. Yan, A.G. Kleber, Changes in extracellular and intracellular pH in ischemic rabbit papillary muscle, Circ. Res. 71 (2) (1992) 460–470.















































                                                       I. BIOMECHANICS
   137   138   139   140   141   142   143   144   145   146   147