Page 141 - Advances in Biomechanics and Tissue Regeneration
P. 141
FURTHER READING 137
[69] A. Yatani, A.M. Brown, N. Akaike, Effect of extracellular pH on sodium current in isolated, single rat ventricular cells, J. Membr. Biol. 78 (2)
(1984) 163–168.
[70] F. Morris, W.J. Brady, ABC of clinical electrocardiography acute myocardial infarction. Part I, BMJ 324 (2002) 831–834.
[71] D. Durrer, R.T. van Dam, G.E. Freud, M.J. Janse, F.L. Meijler, R.C. Arzbaecher, Total excitation of the isolated human heart, Circulation 41 (1970)
899–912.
[72] W.T. Smith, W.F. Fleet, T.A. Johnson, C.L. Engle, W.E. Cascio, The Ib phase of ventricular arrhythmias in ischemic in situ porcine heart is related
to changes in cell-to-cell electrical coupling, Circulation 92 (1995) 3051–3060.
Further Reading
[73] D.G. Allen, P.G. Morris, C.H. Orchard, J.S.A. Pirolo, Nuclear magnetic resonance study of metabolism in the ferret heart during hypoxia and
inhibition of glycolysis, J. Physiol. 361 (1) (1985) 185–204.
[74] M.A. Allessie, F.I. Bonke, F.J. Schopman, Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The “leading circle” con-
cept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle, Circ. Res. 41 (1977) 9–18.
[75] J. Beaumont, N. Davidenko, J.M. Davidenko, J. Jalife, Spiral waves in two-dimensional models of ventricular muscle: formation of a stationary
core, Biophys. J. 75 (1998) 1–14.
[76] N. Bell, M. Garland, Cusp-library: generic parallel algorithms for sparse matrix and graph computations, (2008). Tech. Rep. NVR-2008-008,
NVIDIA corporation, December.
[77] A. Bueno-Orovio, E.M. Cherry, F.H. Fenton, Minimal model for human ventricular action potentials in tissue, J. Theor. Biol. 253 (3) (2008)
544–560.
+
[78] W.C. Cole, C.D. McPherson, D. Sontag, ATP-regulated K channels protect the myocardium against ischemia/reperfusion damage, Circ. Res.
69 (3) (1991) 571–581.
[79] R. Coronel, Heterogeneity in extracellular potassium concentration during early myocardial ischaemia and reperfusion: implications for
arrhythmogenesis, Cardiovasc. Res. 28 (6) (1994) 770–777.
+
[80] R. Coronel, F.J.G. Wilms-Schopman, L.R.C. Dekker, M.J. Janse, Heterogeneities in [K ] o and TQ potential and the inducibility of ventricular
fibrillation during acute regional ischemia in the isolated perfused porcine heart, Circulation 92 (1) (1995) 120–129.
[81] J. Nickolls, I. Buck, M. Garland, K. Skadron, Scalable parallel programming with CUDA, Queue 6 (2) (2008) 40–53.
[82] N.V.I.D.I.A. Corporation, NVIDIA CUDA Programming Guide, June 2008. version 2.0.
[83] D.B. Kirk, W.W. Hwu, Programming Massively Parallel Processors. A Hands-On Approach, Elsevier, 2010.
[84] J.M. Davidenko, R. Salomonsz, A.M. Pertsov, W.T. Baxter, J. Jalife, Effects of pacing on stationary reentrant activity: theoretical and experimen-
tal study, Circ. Res. 77 (6) (1995) 1166–1179.
[85] F. Fenton, A. Karma, Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: filament instability and fibrillation,
Chaos 8 (1) (1998) 20–47.
[86] S. Filippone, M. Colajanni, Psblas: a library for parallel linear algebra computation on sparse matrices, ACM Trans. Math. Softw. 26 (4) (2000)
527–550.
[87] A. Frank, C.J.C. Choung, R.L. Johnson, A finite-element model of oxygen diffusion in the pulmonary capillaries, J. Appl. Physiol. 82 (1997)
2036–2044.
[88] R.N. Gasser, R.D. Vaughan-Jones, Mechanism of potassium efflux and action potential shortening during ischaemia in isolated mammalian
cardiac muscle, J. Physiol. 431 (1) (1990) 713–741.
[89] A.S. Go, D. Mozaffarian, V.L. Roger, et al., Heart disease and stroke statistics 2014 update: a report from the American Heart Association,
Circulation 129 (3) (2014) e28–e292.
[90] W.B. Gough, R. Mehra, M. Restivo, R.H. Zeiler, N. El Sherif, Reentrant ventricular arrhythmias in the late myocardial infarction period in the
dog. 13. Correlation of activation and refractory maps, Circ. Res. 57 (3) (1985) 432–442.
[91] D.M. Harrild, C.S. Henriquez, A finite volume model of cardiac propagation, Ann. Biomed. Eng. 25 (1997) 315–334.
[92] M.N. Hicks, S.M. Cobbe, Effect of glibenclamide on extracellular potassium accumulation and the electrophysiological changes during myo-
cardial ischaemia in the arterially perfused interventricular septum of rabbit, Cardiovasc. Res. 25 (5) (1991) 407–413.
[93] V. Jacquemet, C.S. Henriquez, Finite volume stiffness matrix for solving anisotropic cardiac propagation in 2-D and 3-D unstructured meshes,
IEEE Trans. Biomed. Eng. 52 (8) (2005) 1490–1492.
[94] J.H. Kirkels, C.J. van Echteld, T.J. Ruigrok, Intracellular magnesium during myocardial ischemia and reperfusion: possible consequences for
postischemic recovery, J. Mol. Cell Cardiol. 11 (1989) 1209–1218.
[95] A.G. Kleber, Y. Rudy, Basic mechanisms of cardiac impulse propagation and associated arrhythmias, Physiol. Rev. 84 (2) (2004) 431–488.
[96] I. Kodama, A. Wilde, M.J. Janse, D. Durrer, K. Yamada, Combined effects of hypoxia, hyperkalemia and acidosis on membrane action potential
and excitability of guinea-pig ventricular muscle, J. Mol. Cell Cardiol. 16 (3) (1984) 247–259.
[97] F.V. Lionetti, GPU Accelerated Cardiac Electrophysiology (Master’s thesis), University of San Diego, California, 2010.
[98] C.H. Luo, Y. Rudy, A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction, Circ. Res. 68 (6)
(1991) 1501–1526.
[99] A. Mahajan, Y. Shiferaw, D. Sato, et al., A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates, Biophys. J.
94 (2008) 392–410.
[100] B. Mauroy, Following red blood cells in a pulmonary capillary, ESAIM Proc. 23 (2008) 48–65.
[101] J.G. Murphy, M.A. Lloyd, Mayo Clinic Cardiology, Mayo Clinic Scientific Press and Inform Healthcare USA, Inc., 2007.
[102] G. Karypis, V.M. Kumar, A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing
Orderings of Sparse Matrices, 1998. University of Minnesota, Department of Computer Science/Army HPC Research Center, Minneapolis,
MN, version 4.0, September.
I. BIOMECHANICS