Page 139 - Advances in Biomechanics and Tissue Regeneration
P. 139

REFERENCES                                         135

           Acknowledgments
           The authors thank Dr. Gunnar Seemann at the Karlsruhe Institute of Technology for providing the tetrahedral model of the human atria.



           References
            [1] P.J. Hunter, A.J. Pullan, B.H. Smaill, Modeling total heart function, Annu. Rev. Biomed. Eng. 5 (1) (2003) 147–177.
            [2] D. Mozaffarian, E.J. Benjamin, A.S. Go, On behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee.
               Heart disease and stroke statistics 2016 update: a report from the American Heart Association, Circulation 133 (2016) e38–e360.
            [3] D. Geselowitz, W. Miller, A bidomain model for anisotropic cardiac muscle, Ann. Biomed. Eng. 11 (3) (1983) 191–206.
            [4] C. Henriquez, A brief history of tissue models for cardiac electrophysiology, IEEE Trans. Biomed. Eng. 61 (5) (2014) 1457–1465.
            [5] P. Colli-Franzone, L. Pavarino, A parallel solver for reaction-diffusion systems in computational electrocardiology, Math. Models Methods
               Appl. Sci. 14 (6) (2004) 883–911.
            [6] F.H. Fenton, E.M. Cherry, A. Karma, W.J. Rappel, Modeling wave propagation in realistic heart geometries using the phase-field method, Chaos
               15 (1) (2005) 013502.
            [7] E. Heidenreich, J.M. Ferrero, M. Doblare, J.F. Rodriguez, Adaptive macro finite elements for the numerical solution of monodomain equations in
               cardiac electrophysiology, Ann. Biomed. Eng. 38 (7) (2010) 2331–2345.
            [8] K.H. ten Tusscher, A.V. Panfilov, Alternans and spiral breakup in a human ventricular tissue model, Am. J. Physiol. Heart Circ. Physiol. 291 (3)
               (2006) 1088–1100.
            [9] E.M. Cherry, H.S. Greenside, C.S. Henriquez, Efficient simulation of three-dimensional anisotropic cardiac tissue using an adaptive mesh refine-
               ment method, Chaos 13 (3) (2003) 853–865.
           [10] P. Colli-Franzone, P. Deuflhard, B. Erdmann, J. Lang, L.F. Pavarino, Adaptivity in space and time for reaction-diffusion systems in electrocar-
               diology, SIAM J. Sci. Comput. 28 (3) (2006) 942–962.
           [11] A. Cristoforetti, M. Mase, F. Ravelli, A fully adaptive multiresolution algorithm for atrial arrhythmia simulation on anatomically realistic
               unstructured meshes, IEEE Trans. Biomed. Eng. 60 (9) (2013) 2585–2593.
           [12] M. Bendahmane, R. B€ urger, R. Ruiz-Baier, A multiresolution space-time adaptive scheme for the bidomain model in electrocardiology, Numer.
               Methods Partial Differ. Eq. 26 (6) (2010) 1377–1404.
           [13] M.O. Bernabeu, R. Bordas, P. Pathmanathan, J. Pitt-Francis, J. Cooper, A. Garny, D.J. Gavaghan, B. Rodriguez, J.A. Southern, J.
               P. Whiteley, Chaste: incorporating a novel multi-scale spatial and temporal algorithm into a large-scale open source library, Philos. Trans.
               R. Soc. A 367 (1895) (2009) 1907–1930.
           [14] J.P. Whiteley, Physiology driven adaptivity for the numerical solution of the bidomain equations, Ann. Biomed. Eng. 35 (9) (2007) 1510–1520.
           [15] J. Whiteley, An efficient technique for the numerical solution of the bidomain equations, Ann. Biomed. Eng. 36 (8) (2008) 1398–1408.
           [16] R. Buchty, V. Heuveline, W. Karl, J.P. Weiss, A survey on hardware-aware and heterogeneous computing on multicore processors and accel-
               erators, Concurr. Comput. Pract. Exp. 24 (7) (2012) 663–675.
           [17] J. Nickolls, W. Dallym, The GPU computing era, IEEE Micro 30 (2) (2010) 56–69.
           [18] A.R. Sanderson, M.D. Meyer, R.M. Kirby, C.R. Johnson, A framework for exploring numerical solutions of advection-reaction-diffusion equa-
               tions using a GPU-based approach, Comput. Vis. Sci. 12 (4) (2009) 155–170.
           [19] D. Sato, Y. Xie, J.N. Weiss, Z. Qu, A. Garfinkel, A.R. Sanderson, Acceleration of cardiac tissue simulation with graphic processing units, Med.
               Biol. Eng. Comput. 47 (9) (2009) 1011–1015.
           [20] J. Chai, M. Wen, N. Wu, D. Huang, J. Yang, X. Cai, C. Zhang, Q. Yang, Simulating cardiac electrophysiology in the era of GPU-cluster com-
               puting, IEICE Trans. Inf. Syst. E96-D (12) (2013) 2587–2595.
           [21] E. Bartocci, E.M. Cherry, J. Glimm, R. Grosu, S.A. Smolka, F.H. Fenton, Toward real-time simulation of cardiac dynamics, Proc. of CMSB 2011:
               the 9th ACM International Conference on Computational Methods in Systems Biology, Paris, France, September 21–23, ACM, 2011, pp. 103–112.
           [22] B.M. Rocha, F.O. Campos, R.M. Amorim, G. Plank, R.W.D. Santos, M. Liebmann, G. Haase, Accelerating cardiac excitation spread simulations
               using graphics processing units, Concurr. Comput. Pract. Exp. 23 (7) (2011) 708–720.
           [23] A. Neic, M. Liebmann, E. Hoetzl, L. Mitchell, E.J. Vigmond, G. Haase, G. Plank, Accelerating cardiac bidomain simulations using graphics
               processing units, IEEE Trans. Biomed. Eng. 59 (8) (2012) 2281–2290.
           [24] G. Vigueras, I. Roy, A. Cookson, J. Lee, N. Smith, D. Nordsletten, Toward GPGPU accelerated human electromechanical cardiac simulations,
               Int. J. Numer. Methods Biomed. Eng. 30 (1) (2014) 117–134.
           [25] M. Rubart, D.P. Zipes, Mechanisms of sudden cardiac death, J. Clin. Invest. 115 (9) (2005) 2305–2315.
           [26] M.J. Janse, A.G. Kleber, Electrophysiological changes and ventricular arrhythmias in the early phase of regional myocardial ischemia, Circ. Res.
               49 (1981) 1069–1081.
           [27] E. Carmeliet, Cardiac ionic currents and acute ischemia: from channels to arrhythmias, Physiol. Rev. 79 (3) (1999) 917–1017.
           [28] R. Coronel, J.W. Fiolet, F.J. Wilms-Schopman, A.F. Schaapherder, T.A. Johnson, L.S. Gettes, M.J. Janse, Distribution of extracellular potassium
               and its relation to electrophysiologic changes during acute myocardial ischemia in the isolated perfused porcine heart, Circulation 77 (5) (1988)
               1125–1138.
           [29] M.J. Janse, J. Cinca, H. Morena, J.W. Fiolet, A.G. Kleber, G.P de Vries, A.E. Becker, D. Durrer, The “border zone” in myocardial ischemia. An
               electrophysiological, metabolic, and histochemical correlation in the pig heart, Circ. Res. 44 (4) (1979) 576–588.
           [30] M.J. Janse, F.J. van Capelle, H. Morsink, A.G. Kleber, F. Wilms-Schopman, R. Cardinal, C.N. d’Alnoncourt, D. Durrer, Flow of “injury” current
               and patterns of excitation during early ventricular arrhythmias in acute regional myocardial ischemia in isolated porcine and canine hearts.
               Evidence for two different arrhythmogenic mechanisms, Circ. Res. 47 (2) (1980) 151–165.
           [31] R.L. Wilensky, J. Tranum-Jensen, R. Coronel, A.A.M. Wilde, J.W.T. Fiolet, M.J. Janse, The subendocardial border zone during acute ischemia of
               the rabbit heart: an electrophysiologic, metabolic, and morphologic correlative study, Circulation 74 (1986) 1137–1146.
           [32] A.C. Guyton, J. Hall, Textbook of Medical Physiology, thirteenth ed., Saunders-Elsevier, 2015.
           [33] L. Tung, A Bi-Domain Model for Describing Ischemic Myocardial Potentials (Ph.D. thesis), Massachusetts Institute of Technology. Department
               of Electrical Engineering and Computer Science, 1978.


                                                       I. BIOMECHANICS
   134   135   136   137   138   139   140   141   142   143   144