Page 201 - Advances in Biomechanics and Tissue Regeneration
P. 201

REFERENCES                                         195

            [28] G.T. Yamaguchi, F.E. Zajac, A planar model of the knee joint to characterize the knee extensor mechanism, J. Biomech. 22 (1989) 1–10.
            [29] M.K. Horsman, H. Koopman, H. Veeger, F. van der Helm, The Twente Lower Extremity Model: a comparison of maximal isometric moment
                with the literature, in: The Twente Lower Extremity Model, 2007, p. 65.
            [30] D.G. Thelen, F.C. Anderson, S.L. Delp, Generating dynamic simulations of movement using computed muscle control, J. Biomech. 36 (2003)
                321–328.
            [31] E.M. Arnold, S.R. Ward, R.L. Lieber, S.L. Delp, A model of the lower limb for analysis of human movement, Ann. Biomed. Eng. 38 (2010)
                269–279.
            [32] D.W. Wagner, M.P. Reed, J. Rasmussen, Assessing the importance of motion dynamics for ergonomic analysis of manual materials handling
                tasks using the AnyBody Modeling System, in: SAE Technical Paper, 2007.
            [33] M. Damsgaard, J. Rasmussen, S.T. Christensen, E. Surma, M. de Zee, Analysis of musculoskeletal systems in the AnyBody Modeling System,
                Simul. Model. Pract. Theory 14 (2006) 1100–1111.
            [34] M. De Zee, L. Hansen, C. Wong, J. Rasmussen, E.B. Simonsen, A generic detailed rigid-body lumbar spine model, J. Biomech. 40 (2007)
                1219–1227.
            [35] M. Adouni, A. Shirazi-Adl, Partitioning of knee joint internal forces in gait is dictated by the knee adduction angle and not by the knee adduc-
                tion moment, J. Biomech. 47 (2014) 1696–1703.
            [36] H. Marouane, A. Shirazi-Adl, M. Adouni, J. Hashemi, Steeper posterior tibial slope markedly increases ACL force in both active gait and pas-
                sive knee joint under compression, J. Biomech. 47 (2014) 1353–1359.
            [37] H. Marouane, A. Shirazi-Adl, M. Adouni, Knee joint passive stiffness and moment in sagittal and frontal planes markedly increase with com-
                pression, Comput. Method Biomech. Biomed. Eng. 18 (2015) 339–350.
            [38] E. Koay, K. Athanasiou, Articular cartilage biomechanics, mechanobiology, and tissue engineering, in: Biomechanical Systems Technology:
                Volume 3: Muscular Skeletal Systems, 2009, pp. 1–37.
            [39] I. Clarke, Articular cartilage: a review and scanning electron microscope study. II. The territorial fibrillar architecture, J. Anat. 118 (1974) 261.
            [40] M. K€ a€ ab, I. Ap Gwynn, H. N€ otzli, Collagen fibre arrangement in the tibial plateau articular cartilage of man and other mammalian species,
                J. Anat. 193 (1998) 23–34.
            [41] V.C. Mow, X.E. Guo, Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies, Annu. Rev. Biomed.
                Eng. 4 (2002) 175–209.
            [42] V.C. Mow, M.H. Holmes, W. Michael Lai, Fluid transport and mechanical properties of articular cartilage: a review, J. Biomech. 17 (1984)
                377–394.
            [43] A. Ratcliffe, P.R. Fryer, T.E. Hardingham, The distribution of aggregating proteoglycans in articular cartilage: comparison of quantitative
                immunoelectron microscopy with radioimmunoassay and biochemical analysis, J. Histochem. Cytochem. 32 (1984) 193.
            [44] D. Shepherd, B. Seedhom, Thickness of human articular cartilage in joints of the lower limb, Ann. Rheum. Dis. 58 (1999) 27–34.
            [45] W. Wilson, J. Huyghe, C. Van Donkelaar, Depth-dependent compressive equilibrium properties of articular cartilage explained by its com-
                position, Biomech. Model. Mechanobiol. 6 (2007) 43–53.
            [46] R. Minns, F. Steven, The collagen fibril organization in human articular cartilage, J. Anat. 123 (1977) 437.
            [47] N. Broom, D. Marra, Ultrastructural evidence for fibril-to-fibril associations in articular cartilage and their functional implication, J. Anat.
                146 (1986) 185.
            [48] L. Li, J. Soulhat, M. Buschmann, A. Shirazi-Adl, Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced por-
                oelastic model, Clin. Biomech. 14 (1999) 673–682.
            [49] J. Soulhat, M. Buschmann, A. Shirazi-Adl, A fibril-network-reinforced biphasic model of cartilage in unconfined compression, J. Biomech. Eng.
                121 (1999) 340–347.
            [50] L. Li, M. Buschmann, A. Shirazi-Adl, The asymmetry of transient response in compression versus release for cartilage in unconfined compres-
                sion, J. Biomech. Eng. 123 (2001) 519–522.
            [51] C.-Y. Huang, A. Stankiewicz, G.A. Ateshian, V.C. Mow, Anisotropy, inhomogeneity, and tension–compression nonlinearity of human gleno-
                humeral cartilage in finite deformation, J. Biomech. 38 (2005) 799–809.
            [52] M.H. Doweidar, M. Doblar  e, Finite element modeling and simulation of the multiphysic behavior of articular cartilage, in: Numerical Methods
                and Advanced Simulation in Biomechanics and Biological Processes, Elsevier, 2018, pp. 37–53.
            [53] L. Li, M. Buschmann, A. Shirazi-Adl, A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: inhomogeneous response in
                unconfined compression, J. Biomech. 33 (2000) 1533–1541.
            [54] V. Duthon, C. Barea, S. Abrassart, J. Fasel, D. Fritschy, J. M  en  etrey, Anatomy of the anterior cruciate ligament, Knee Surg. Sports Traumatol.
                Arthrosc. 14 (2006) 204–213.
            [55] J. Hollis, S. Takai, D. Adams, S. Horibe, S.-Y. Woo, The effects of knee motion and external loading on the length of the anterior cruciate lig-
                ament (ACL): a kinematic study, J. Biomech. Eng. 113 (1991) 208–214.
            [56] S.L. Woo, R.J. Fox, M. Sakane, G.A. Livesay, T.W. Rudy, F.H. Fu, Biomechanics of the ACL: measurements of in situ force in the ACL and knee
                kinematics, Knee 5 (1998) 267–288.
            [57] A. Amis, G. Dawkins, Functional anatomy of the anterior cruciate ligament. Fibre bundle actions related to ligament replacements and injuries,
                Bone Joint J. 73 (1991) 260–267.
            [58] M.T. Gabriel, E.K. Wong, S.L.Y. Woo, M. Yagi, R.E. Debski, Distribution of in situ forces in the anterior cruciate ligament in response to rotatory
                loads, J. Orthop. Res. 22 (2004) 85–89.
            [59] M. Sakane, R.J. Fox, S.L.Y.W. Glen, A. Livesay, G. Li, F.H. Fu, In situ forces in the anterior cruciate ligament and its bundles in response to
                anterior tibial loads, J. Orthop. Res. 15 (1997) 285–293.
            [60] K.L. Markolf, D.M. Burchfield, M.M. Shapiro, M.F. Shepard, G.A.M. Finerman, J.L. Slauterbeck, Combined knee loading states that generate
                high anterior cruciate ligament forces, J. Orthop. Res. 13 (1995) 930–935.
            [61] R. Aspden, A model for the function and failure of the meniscus, Eng. Med. 14 (1985) 119–122.
            [62] D. Skaggs, W. Warden, V. Mow, Radial tie fibers influence the tensile properties of the bovine medial meniscus, J. Orthop. Res. 12 (1994)
                176–185.




                                                       I. BIOMECHANICS
   196   197   198   199   200   201   202   203   204   205   206