Page 201 - Advances in Biomechanics and Tissue Regeneration
P. 201
REFERENCES 195
[28] G.T. Yamaguchi, F.E. Zajac, A planar model of the knee joint to characterize the knee extensor mechanism, J. Biomech. 22 (1989) 1–10.
[29] M.K. Horsman, H. Koopman, H. Veeger, F. van der Helm, The Twente Lower Extremity Model: a comparison of maximal isometric moment
with the literature, in: The Twente Lower Extremity Model, 2007, p. 65.
[30] D.G. Thelen, F.C. Anderson, S.L. Delp, Generating dynamic simulations of movement using computed muscle control, J. Biomech. 36 (2003)
321–328.
[31] E.M. Arnold, S.R. Ward, R.L. Lieber, S.L. Delp, A model of the lower limb for analysis of human movement, Ann. Biomed. Eng. 38 (2010)
269–279.
[32] D.W. Wagner, M.P. Reed, J. Rasmussen, Assessing the importance of motion dynamics for ergonomic analysis of manual materials handling
tasks using the AnyBody Modeling System, in: SAE Technical Paper, 2007.
[33] M. Damsgaard, J. Rasmussen, S.T. Christensen, E. Surma, M. de Zee, Analysis of musculoskeletal systems in the AnyBody Modeling System,
Simul. Model. Pract. Theory 14 (2006) 1100–1111.
[34] M. De Zee, L. Hansen, C. Wong, J. Rasmussen, E.B. Simonsen, A generic detailed rigid-body lumbar spine model, J. Biomech. 40 (2007)
1219–1227.
[35] M. Adouni, A. Shirazi-Adl, Partitioning of knee joint internal forces in gait is dictated by the knee adduction angle and not by the knee adduc-
tion moment, J. Biomech. 47 (2014) 1696–1703.
[36] H. Marouane, A. Shirazi-Adl, M. Adouni, J. Hashemi, Steeper posterior tibial slope markedly increases ACL force in both active gait and pas-
sive knee joint under compression, J. Biomech. 47 (2014) 1353–1359.
[37] H. Marouane, A. Shirazi-Adl, M. Adouni, Knee joint passive stiffness and moment in sagittal and frontal planes markedly increase with com-
pression, Comput. Method Biomech. Biomed. Eng. 18 (2015) 339–350.
[38] E. Koay, K. Athanasiou, Articular cartilage biomechanics, mechanobiology, and tissue engineering, in: Biomechanical Systems Technology:
Volume 3: Muscular Skeletal Systems, 2009, pp. 1–37.
[39] I. Clarke, Articular cartilage: a review and scanning electron microscope study. II. The territorial fibrillar architecture, J. Anat. 118 (1974) 261.
[40] M. K€ a€ ab, I. Ap Gwynn, H. N€ otzli, Collagen fibre arrangement in the tibial plateau articular cartilage of man and other mammalian species,
J. Anat. 193 (1998) 23–34.
[41] V.C. Mow, X.E. Guo, Mechano-electrochemical properties of articular cartilage: their inhomogeneities and anisotropies, Annu. Rev. Biomed.
Eng. 4 (2002) 175–209.
[42] V.C. Mow, M.H. Holmes, W. Michael Lai, Fluid transport and mechanical properties of articular cartilage: a review, J. Biomech. 17 (1984)
377–394.
[43] A. Ratcliffe, P.R. Fryer, T.E. Hardingham, The distribution of aggregating proteoglycans in articular cartilage: comparison of quantitative
immunoelectron microscopy with radioimmunoassay and biochemical analysis, J. Histochem. Cytochem. 32 (1984) 193.
[44] D. Shepherd, B. Seedhom, Thickness of human articular cartilage in joints of the lower limb, Ann. Rheum. Dis. 58 (1999) 27–34.
[45] W. Wilson, J. Huyghe, C. Van Donkelaar, Depth-dependent compressive equilibrium properties of articular cartilage explained by its com-
position, Biomech. Model. Mechanobiol. 6 (2007) 43–53.
[46] R. Minns, F. Steven, The collagen fibril organization in human articular cartilage, J. Anat. 123 (1977) 437.
[47] N. Broom, D. Marra, Ultrastructural evidence for fibril-to-fibril associations in articular cartilage and their functional implication, J. Anat.
146 (1986) 185.
[48] L. Li, J. Soulhat, M. Buschmann, A. Shirazi-Adl, Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced por-
oelastic model, Clin. Biomech. 14 (1999) 673–682.
[49] J. Soulhat, M. Buschmann, A. Shirazi-Adl, A fibril-network-reinforced biphasic model of cartilage in unconfined compression, J. Biomech. Eng.
121 (1999) 340–347.
[50] L. Li, M. Buschmann, A. Shirazi-Adl, The asymmetry of transient response in compression versus release for cartilage in unconfined compres-
sion, J. Biomech. Eng. 123 (2001) 519–522.
[51] C.-Y. Huang, A. Stankiewicz, G.A. Ateshian, V.C. Mow, Anisotropy, inhomogeneity, and tension–compression nonlinearity of human gleno-
humeral cartilage in finite deformation, J. Biomech. 38 (2005) 799–809.
[52] M.H. Doweidar, M. Doblar e, Finite element modeling and simulation of the multiphysic behavior of articular cartilage, in: Numerical Methods
and Advanced Simulation in Biomechanics and Biological Processes, Elsevier, 2018, pp. 37–53.
[53] L. Li, M. Buschmann, A. Shirazi-Adl, A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: inhomogeneous response in
unconfined compression, J. Biomech. 33 (2000) 1533–1541.
[54] V. Duthon, C. Barea, S. Abrassart, J. Fasel, D. Fritschy, J. M en etrey, Anatomy of the anterior cruciate ligament, Knee Surg. Sports Traumatol.
Arthrosc. 14 (2006) 204–213.
[55] J. Hollis, S. Takai, D. Adams, S. Horibe, S.-Y. Woo, The effects of knee motion and external loading on the length of the anterior cruciate lig-
ament (ACL): a kinematic study, J. Biomech. Eng. 113 (1991) 208–214.
[56] S.L. Woo, R.J. Fox, M. Sakane, G.A. Livesay, T.W. Rudy, F.H. Fu, Biomechanics of the ACL: measurements of in situ force in the ACL and knee
kinematics, Knee 5 (1998) 267–288.
[57] A. Amis, G. Dawkins, Functional anatomy of the anterior cruciate ligament. Fibre bundle actions related to ligament replacements and injuries,
Bone Joint J. 73 (1991) 260–267.
[58] M.T. Gabriel, E.K. Wong, S.L.Y. Woo, M. Yagi, R.E. Debski, Distribution of in situ forces in the anterior cruciate ligament in response to rotatory
loads, J. Orthop. Res. 22 (2004) 85–89.
[59] M. Sakane, R.J. Fox, S.L.Y.W. Glen, A. Livesay, G. Li, F.H. Fu, In situ forces in the anterior cruciate ligament and its bundles in response to
anterior tibial loads, J. Orthop. Res. 15 (1997) 285–293.
[60] K.L. Markolf, D.M. Burchfield, M.M. Shapiro, M.F. Shepard, G.A.M. Finerman, J.L. Slauterbeck, Combined knee loading states that generate
high anterior cruciate ligament forces, J. Orthop. Res. 13 (1995) 930–935.
[61] R. Aspden, A model for the function and failure of the meniscus, Eng. Med. 14 (1985) 119–122.
[62] D. Skaggs, W. Warden, V. Mow, Radial tie fibers influence the tensile properties of the bovine medial meniscus, J. Orthop. Res. 12 (1994)
176–185.
I. BIOMECHANICS