Page 202 - Advances in Biomechanics and Tissue Regeneration
P. 202

196                     9. COMPUTATIONAL MUSCULOSKELETAL BIOMECHANICS OF THE KNEE JOINT

            [63] D.C. Fithian, M.A. Kelly, V.C. Mow, Material properties and structure-function relationships in the menisci, Clin. Orthop. Relat. Res. (1990) 19.
            [64] I.M. Levy, P. Torzilli, R. Warren, The effect of medial meniscectomy on anterior-posterior motion of the knee, J. Bone Joint Surg. Am. 64 (1982)
                883–888.
            [65] A.S. Voloshin, J. Wosk, Shock absorption of meniscectomized and painful knees: a comparative in vivo study, J. Biomed. Eng. 5 (1983) 157–161.
            [66] E.L. Radin, F. de Lamotte, P. Maquet, Role of the Menisci in the Distribution of Stress in the Knee, Clin. Orthop. Relat. Res. 185 (1984) 290–294.
            [67] I.M. Levy, P. Torzilli, J. Gould, R. Warren, The effect of lateral meniscectomy on motion of the knee, J. Bone Joint Surg. Am. 71 (1989) 401–406.
            [68] B. Seedhom, Transmission of the load in the knee joint with special reference to the role of the menisci part I: anatomy, analysis and apparatus,
                Eng. Med. 8 (1979) 207–219.
            [69] S. Kawamura, K. Lotito, S.A. Rodeo, Biomechanics and healing response of the meniscus, Oper. Tech. Sports Med. 11 (2003) 68–76.
            [70] N. Shrive, J. O’connor, J. Goodfellow, Load-bearing in the knee joint, Clin. Orthop. Relat. Res. 131 (1978) 279–287.
            [71] A. Ahmed, D. Burke, In-vitro measurement of static pressure distribution in synovial joints – Part I: Tibial surface of the knee, J. Biomech. Eng.
                105 (1983) 216.
            [72] M.E. Baratz, F.H. Fu, R. Mengato, Meniscal tears: the effect of meniscectomy and of repair on intraarticular contact areas and stress in the
                human knee A preliminary report, Am. J. Sports Med. 14 (1986) 270–275.
            [73] N. Caplan, D.F. Kader, Knee joint changes after meniscectomy, in: Classic Papers in Orthopaedics, Springer, 2014, pp. 173–175.
            [74] T. Fairbank, Knee joint changes after meniscectomy, J. Bone Joint Surg. (Br.) 30 (1948) 664–670.
            [75] R.E. Jones, E.C. Smith, J. Reisch, Effects of medial meniscectomy in patients older than forty years, J. Bone Joint Surg. Am. 60 (1978) 783–786.
            [76] V.C. Mow, A. Ratcliffe, Structure and function of articular cartilage and meniscus, Basic Orthop. Biomech. 2 (1997) 113–177.
            [77] M. Tissakht, A. Ahmed, Tensile stress-strain characteristics of the human meniscal material, J. Biomech. 28 (1995) 411–422.
            [78] W. Zhu, K.Y. Chern, V.C. Mow, Anisotropic viscoelastic shear properties of bovine meniscus, Clin. Orthop. Relat. Res. (1994) 34.
            [79] A.E. Peters, R. Akhtar, E.J. Comerford, K.T. Bates, Tissue material properties and computational modelling of the human tibiofemoral joint: a
                critical review, PeerJ 6 (2018) e4298.
            [80] A. Shiraz-Adl, Strain in fibers of a lumbar disc: analysis of the role of lifting in producing disc prolapse, Spine 14 (1989) 96–103.
            [81] K. Moglo, A. Shirazi-Adl, Biomechanics of passive knee joint in drawer: load transmission in intact and ACL-deficient joints, Knee 10 (2003)
                265–276.
            [82] W. Mesfar, A. Shirazi-Adl, Biomechanics of the knee joint in flexion under various quadriceps forces, Knee 12 (2005) 424–434.
            [83] K. Moglo, A. Shirazi-Adl, On the coupling between anterior and posterior cruciate ligaments, and knee joint response under anterior femoral
                drawer in flexion: a finite element study, Clin. Biomech. 18 (2003) 751–759.
            [84] K. Moglo, A. Shirazi-Adl, Cruciate coupling and screw-home mechanism in passive knee joint during extension–flexion, J. Biomech. 38 (2005)
                1075–1083.
            [85] R. Shirazi, A. Shirazi-Adl, Analysis of articular cartilage as a composite using nonlinear membrane elements for collagen fibrils, Med. Eng.
                Phys. 27 (2005) 827–835.
            [86] R. Shirazi, A. Shirazi-Adl, Deep vertical collagen fibrils play a significant role in mechanics of articular cartilage, J. Orthop. Res. 26 (2008)
                608–615.
            [87] R. Shirazi, A. Shirazi-Adl, M. Hurtig, Role of cartilage collagen fibrils networks in knee joint biomechanics under compression, J. Biomech.
                41 (2008) 3340–3348.
            [88] S.A. Shirazi-Adl, S.C. SHRIVASTAVA, A.M. AHMED, Stress analysis of the lumbar disc-body unit in compression a three-dimensional non-
                linear finite element study, Spine 9 (1984) 120–134.
            [89] G. Kempson, M. Freeman, S. Swanson, Tensile properties of articular cartilage, 1968.
            [90] G. Kempson, H. Muir, C. Pollard, M. Tuke, The tensile properties of the cartilage of human femoral condyles related to the content of collagen
                and glycosaminoglycans, Biochim. Biophys. Acta (BBA) Gen. Subjects 297 (1973) 456–472.
            [91] S.-Y. Woo, W. Akeson, G. Jemmott, Measurements of nonhomogeneous, directional mechanical properties of articular cartilage in tension,
                J. Biomech. 9 (1976) 785–791.
            [92] T.D. Brown, R.J. Singerman, Experimental determination of the linear biphasic constitutive coefficients of human fetal proximal femoral chon-
                droepiphysis, J. Biomech. 19 (1986) 597–605.
            [93] G.A. Ateshian, B.J. Ellis, J.A. Weiss, Equivalence between short-time biphasic and incompressible elastic material responses, J. Biomech. Eng.
                129 (2007) 405–412.
            [94] W. Mesfar, A. Shirazi-Adl, Biomechanics of changes in ACL and PCL material properties or prestrains in flexion under muscle force-
                implications in ligament reconstruction, Comput. Method Biomech. Biomed. Eng. 9 (2006) 201–209.
            [95] K. Moglo, A. Shirazi-Adl, On the coupling between anterior and posterior cruciate ligaments, and knee joint response under anterior femoral
                drawer in flexion: a finite element study, Clin. Biomech. 18 (2003) 751–759.
            [96] A. Shirazi-Adl, K. Moglo, Effect of changes in cruciate ligaments pretensions on knee joint laxity and ligament forces, Comput. Methods Bio-
                mech. Biomed. Eng. 8 (2005) 17–24.
            [97] M.S. DeMers, S. Pal, S.L. Delp, Changes in tibiofemoral forces due to variations in muscle activity during walking, J. Orthop. Res. 32 (2014)
                769–776.
            [98] B.A. Knarr, J.S. Higginson, Practical approach to subject-specific estimation of knee joint contact force, J. Biomech. (2015).
            [99] Z.F. Lerner, M.S. DeMers, S.L. Delp, R.C. Browning, How tibiofemoral alignment and contact locations affect predictions of medial and lateral
                tibiofemoral contact forces, J. Biomech. 48 (2015) 644–650.
           [100] R.H. Miller, A.Y. Esterson, J.K. Shim, Joint contact forces when minimizing the external knee adduction moment by gait modification: a com-
                puter simulation study, Knee (2015).
           [101] K.M. Steele, M.S. DeMers, M.H. Schwartz, S.L. Delp, Compressive tibiofemoral force during crouch gait, Gait Posture 35 (2012) 556–560.
           [102] T.F. Besier, M. Fredericson, G.E. Gold, G.S. Beaupr  e, S.L. Delp, Knee muscle forces during walking and running in patellofemoral pain patients
                and pain-free controls, J. Biomech. 42 (2009) 898–905.
           [103] P. Gerus, M. Sartori, T.F. Besier, B.J. Fregly, S.L. Delp, S.A. Banks, M.G. Pandy, D.D. D’Lima, D.G. Lloyd, Subject-specific knee joint geometry
                improves predictions of medial tibiofemoral contact forces, J. Biomech. 46 (2013) 2778–2786.




                                                       I. BIOMECHANICS
   197   198   199   200   201   202   203   204   205   206   207