Page 203 - Advances in Biomechanics and Tissue Regeneration
P. 203

REFERENCES                                         197

           [104] D. Kumar, K.S. Rudolph, K.T. Manal, EMG-driven modeling approach to muscle force and joint load estimations: case study in knee osteo-
                arthritis, J. Orthop. Res. 30 (2012) 377–383.
           [105] M. Sartori, M. Reggiani, D. Farina, D.G. Lloyd, EMG-driven forward-dynamic estimation of muscle force and joint moment about multiple
                degrees of freedom in the human lower extremity, PLoS One 7 (2012) e52618.
           [106] J. Cholewicki, S.M. McGill, EMG assisted optimization: a hybrid approach for estimating muscle forces in an indeterminate biomechanical
                model, J. Biomech. 27 (1994) 1287–1289.
           [107] D. Gagnon, N. Arjmand, A. Plamondon, A. Shirazi-Adl, C. Larivière, An improved multi-joint EMG-assisted optimization approach to esti-
                mate joint and muscle forces in a musculoskeletal model of the lumbar spine, J. Biomech. 44 (2011) 1521–1529.
           [108] N. Arjmand, A. Shirazi-Adl, Sensitivity of kinematics-based model predictions to optimization criteria in static lifting tasks, Med. Eng. Phys.
                28 (2006) 504–514.
           [109] H. Mokhtarzadeh, L. Perraton, L. Fok, M.A. Muñoz, R. Clark, P. Pivonka, A.L. Bryant, A comparison of optimisation methods and knee joint
                degrees of freedom on muscle force predictions during single-leg hop landings, J. Biomech. 47 (2014) 2863–2868.
           [110] M. Adouni, A. Shirazi-Adl, Consideration of equilibrium equations at the hip joint alongside those at the knee and ankle joints has mixed
                effects on knee joint response during gait, J. Biomech. 46 (2013) 619–624.
           [111] C. Redl, M. Gfoehler, M.G. Pandy, Sensitivity of muscle force estimates to variations in muscle–tendon properties, Hum. Mov. Sci. 26 (2007)
                306–319.
           [112] N. Arjmand, D. Gagnon, A. Plamondon, A. Shirazi-Adl, C. Lariviere, A comparative study of two trunk biomechanical models under sym-
                metric and asymmetric loadings, J. Biomech. 43 (2010) 485–491.
           [113] K.L. Markolf, W.L. Bargar, S.C. Shoemaker, H.C. Amstutz, The role of joint load in knee stability, J. Bone Joint Surg. Am. 63 (1981) 570.
           [114] H. Kurosawa, T. Fukubayashi, H. Nakajima, Load-bearing mode of the knee joint: physical behavior of the knee joint with or without menisci,
                Clin. Orthop. Relat. Res. (1980) 283.
           [115] S.J. Lee, K.J. Aadalen, P. Malaviya, E.P. Lorenz, J.K. Hayden, J. Farr, R.W. Kang, B.J. Cole, Tibiofemoral contact mechanics after serial medial
                meniscectomies in the human cadaveric knee, Am. J. Sports Med. 34 (2006) 1334–1344.
           [116] M. Bendjaballah, A. Shirazi-Adl, D. Zukor, Finite element analysis of human knee joint in varus-valgus, Clin. Biomech. 12 (1997) 139–148.
           [117] R. Shirazi, A. Shirazi-Adl, Analysis of partial meniscectomy and ACL reconstruction in knee joint biomechanics under a combined loading,
                Clin. Biomech. 24 (2009) 755–761.
           [118] T.W. Rudy, M. Sakane, R.E. Debski, S.L. Woo, The effect of the point of application of anterior tibial loads on human knee kinematics,
                J. Biomech. 33 (2000) 1147–1152.
           [119] H.-U. Buff, L.C. Jones, D.S. Hungerford, Experimental determination of forces transmitted through the patello-femoral joint, J. Biomech.
                21 (1988) 17–23.
           [120] T.Q. Lee, S.H. Anzel, K.A. Bennett, D. Pang, W.C. Kim, The influence of fixed rotational deformities of the femur on the patellofemoral contact
                pressures in human cadaver knees, Clin. Orthop. Relat. Res. 302 (1994) 69–74.
           [121] L. Draganich, T. Andriacchi, G. Andersson, Interaction between intrinsic knee mechanics and the knee extensor mechanism, J. Orthop. Res.
                5 (1987) 539–547.
           [122] W. Senavongse, F. Farahmand, J. Jones, H. Andersen, Quantitative measurement of patellofemoral joint stability: force-displacement behavior
                of the human patella in vitro, J. Orthop. Res. 21 (2003) 780.
           [123] F. Farahmand, M.N. Tahmasbi, A. Amis, The contribution of the medial retinaculum and quadriceps muscles to patellar lateral stability—an
                in-vitro study, Knee 11 (2004) 89–94.
           [124] K.A. Jurist, J.C. Otis, Anteroposterior tibiofemoral displacements during isometric extension efforts. The roles of external load and knee flexion
                angle, Am. J. Sports Med. 13 (1985) 254–258.
           [125] M.G. Pandy, K.B. Shelburne, Dependence of cruciate-ligament loading on muscle forces and external load, J. Biomech. 30 (1997) 1015–1024.
           [126] M. Adouni, A. Shirazi-Adl, Knee joint biomechanics in closed-kinetic-chain exercises, Comput. Method Biomech. Biomed. Eng. 12 (2009)
                661–670.
           [127] Z.A. Cohen, H. Roglic, R.P. Grelsamer, J.H. Henry, W.N. Levine, V.C. Mow, G.A. Ateshian, Patellofemoral stresses during open and closed
                kinetic chain exercises. An analysis using computer simulation, Am. J. Sports Med. 29 (2001) 480–487.
           [128] J. Hashemi, N. Chandrashekar, H. Mansouri, B. Gill, J.R. Slauterbeck, R.C. Schutt, E. Dabezies, B.D. Beynnon, Shallow medial tibial plateau and
                steep medial and lateral tibial slopes new risk factors for anterior cruciate ligament injuries, Am. J. Sports Med. 38 (2010) 54–62.
           [129] B. Sonnery-Cottet, P. Archbold, T. Cucurulo, J.-M. Fayard, J. Bortolletto, M. Thaunat, T. Prost, P. Chambat, The influence of the tibial slope and
                the size of the intercondylar notch on rupture of the anterior cruciate ligament, J. Bone Joint Surg. (Br.) 93 (2011) 1475–1478.
           [130] K. Shelburne, M. Pandy, Determinants of cruciate-ligament loading during rehabilitation exercise, Clin. Biomech. 13 (1998) 403–413.
           [131] K.B. Shelburne, M.G. Pandy, F.C. Anderson, M.R. Torry, Pattern of anterior cruciate ligament force in normal walking, J. Biomech. 37 (2004)
                797–805.
           [132] K.B. Shelburne, M.R. Torry, M.G. Pandy, Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading dur-
                ing normal gait, J. Orthop. Res. 24 (2006) 1983–1990.
           [133] B.J. Fregly, T.F. Besier, D.G. Lloyd, S.L. Delp, S.A. Banks, M.G. Pandy, D.D. D’Lima, Grand challenge competition to predict in vivo knee loads,
                J. Orthop. Res. 30 (2012) 503–513.
           [134] J.L. Astephen, Biomechanical Factors in the Progression of Knee Osteoarthritis, School of Biomedical Engineering, Dalhousie University,
                Halifax, 2007.
           [135] J.L. Astephen, K.J. Deluzio, G.E. Caldwell, M.J. Dunbar, Biomechanical changes at the hip, knee, and ankle joints during gait are associated
                with knee osteoarthritis severity, J. Orthop. Res. 26 (2008) 332–341.
           [136] A.E. Hunt, R. M. Smith, M. Torode, A.-M. Keenan, Inter-segment foot motion and ground reaction forces over the stance phase of walking,
                Clin. Biomech. 16 (2001) 592–600.
           [137] H. Galway, D. MacIntosh, The lateral pivot shift: a symptom and sign of anterior cruciate ligament insufficiency, Clin. Orthop. Relat. Res.
                147 (1980) 45–50.
           [138] J.S. Torg, W. Conrad, V. Kalen, Clinical I diagnosis of anterior cruciate ligament instability in the athlete, Am. J. Sports Med. 4 (1976) 84–93.




                                                       I. BIOMECHANICS
   198   199   200   201   202   203   204   205   206   207   208