Page 204 - Advances in Biomechanics and Tissue Regeneration
P. 204

198                     9. COMPUTATIONAL MUSCULOSKELETAL BIOMECHANICS OF THE KNEE JOINT

           [139] A. Bergmark, Stability of the lumbar spine: a study in mechanical engineering, Acta Orthop. Scand. 60 (1989) 1–54.
           [140] M. Sharifi, A. Shirazi-Adl, H. Marouane, Computational stability of human knee joint at early stance in gait: effects of muscle coactivity and
                anterior cruciate ligament deficiency, J. Biomech. (2017).
           [141] J. Crisco Iii, M.M. Panjabi, The intersegmental and multisegmental muscles of the lumbar spine: a biomechanical model comparing lateral
                stabilizing potential, Spine 16 (1991) 793–799.
           [142] H.B. Henninger, S.P. Reese, A.E. Anderson, J.A. Weiss, Validation of computational models in biomechanics, Proc. Inst. Mech. Eng. H J. Eng.
                Med. 224 (2010) 801–812.
           [143] A.C. Jones, R.K. Wilcox, Finite element analysis of the spine: towards a framework of verification, validation and sensitivity analysis, Med. Eng.
                Phys. 30 (2008) 1287–1304.
           [144] M. Viceconti, S. Olsen, L.-P. Nolte, K. Burton, Extracting clinically relevant data from finite element simulations, Clin. Biomech. 20 (2005)
                451–454.
           [145] M.Z. Bendjaballah, A. Shirazi-Adl, D. Zukor, Biomechanical response of the passive human knee joint under anterior-posterior forces, Clin.
                Biomech. 13 (1998) 625–633.
           [146] W. Mesfar, A. Shirazi-Adl, Knee joint biomechanics in open-kinetic-chain flexion exercises, Clin. Biomech. Kidlington 23 (2008) 477–482.
           [147] W. Mesfar, A. Shirazi-Adl, Computational biomechanics of knee joint in open kinetic chain extension exercises, Comput. Method Biomech.
                Biomed. Eng. 11 (2008) 55–61.
           [148] W. Krause, M. Pope, R. Johnson, D. Wilder, Mechanical changes in the knee after meniscectomy, J. Bone Joint Surg. Am. 58 (1976) 599.
           [149] P.S. Walker, M.J. Erkman, The role of the menisci in force transmission across the knee, Clin. Orthop. Relat. Res. 109 (1975) 184.
           [150] S.Y. Poh, K.S.A. Yew, P.L.K. Wong, S.B.J. Koh, S.L. Chia, S. Fook-Chong, T.S. Howe, Role of the anterior intermeniscal ligament in tibiofemoral
                contact mechanics during axial joint loading, Knee (2011).
           [151] A.M. Seitz, A. Lubomierski, B. Friemert, A. Ignatius, L. D€ urselen, Effect of partial meniscectomy at the medial posterior horn on tibiofemoral
                contact mechanics and meniscal hoop strains in human knees, J. Orthop. Res. 30 (2012) 934–942.
           [152] J.M. Marzo, J. Gurske-DePerio, Effects of medial meniscus posterior horn avulsion and repair on tibiofemoral contact area and peak contact
                pressure with clinical implications, Am. J. Sports Med. 37 (2009) 124–129.
           [153] J.M. Paci, M.G. Scuderi, F.W. Werner, L.G. Sutton, P.F. Rosenbaum, J.P. Cannizzaro, Knee medial compartment contact pressure increases with
                release of the type I anterior intermeniscal ligament, Am. J. Sports Med. 37 (2009) 1412–1416.
           [154] T.D. Brown, D.T. Shaw, In vitro contact stress distribution on the femoral condyles, J. Orthop. Res. 2 (1984) 190–199.
           [155] A. Huang, M. Hull, S.M. Howell, The level of compressive load affects conclusions from statistical analyses to determine whether a lateral
                meniscal autograft restores tibial contact pressure to normal: a study in human cadaveric knees, J. Orthop. Res. 21 (2003) 459–464.
           [156] G.A. Paletta, T. Manning, E. Snell, R. Parker, J. Bergfeld, The effect of allograft meniscal replacement on intraarticular contact area and pres-
                sures in the human knee a biomechanical study, Am. J. Sports Med. 25 (1997) 692–698.
           [157] T. Fukubayashi, H. Kurosawa, The contact area and pressure distribution pattern of the knee: a study of normal and osteoarthrotic knee joints,
                Acta Orthop. 51 (1980) 871–879.
           [158] P. Walker, J. Hajek, The load-bearing area in the knee joint, J. Biomech. 5 (1972) 581–589.
           [159] T.L. Haut Donahue, M. Hull, A finite element model of the human knee joint for the study of tibio-femoral contact, J. Biomech. Eng. 124
                (2002) 273.
           [160] T.L. Haut Donahue, M. Hull, M.M. Rashid, C.R. Jacobs, How the stiffness of meniscal attachments and meniscal material properties affect tibio-
                femoral contact pressure computed using a validated finite element model of the human knee joint, J. Biomech. 36 (2003) 19–34.
           [161] K. Markolf, J. Mensch, H. Amstutz, Stiffness and laxity of the knee – the contributions of the supporting structures. A quantitative in vitro
                study, J. Bone Joint Surg. Am. 58 (1976) 583.
           [162] M.W. Creaby, T.V. Wrigley, B.W. Lim, K.A. Bowles, B.R. Metcalf, R.S. Hinman, K.L. Bennell, Varus–valgus laxity and passive stiffness in
                medial knee osteoarthritis, Arthritis Care Res. 62 (2010) 1237–1243.
           [163] D. Wilson, J. Feikes, J. O’connor, Ligaments and articular contact guide passive knee flexion, J. Biomech. 31 (1998) 1127–1136.
           [164] D.R. Wilson, J. Feikes, A. Zavatsky, J. O’connor, The components of passive knee movement are coupled to flexion angle, J. Biomech. 33 (2000)
                465–473.
           [165] S.C. Shoemaker, K.L. Markolf, Effects of joint load on the stiffness and laxity of ligament-deficient knees, J. Bone Joint Surg. Am. 67 (1985)
                136–146.
           [166] H. Kurosawa, P. Walker, S. Abe, A. Garg, T. Hunter, Geometry and motion of the knee for implant and orthotic design, J. Biomech. 18 (1985)
                487–499.
           [167] Y.-F. Hsich, L. Draganich, Knee kinematics and ligament lengths during physiologic levels of isometric quadriceps loads, Knee 4 (1997)
                145–154.
           [168] B. Beynnon, J. Yu, D. Huston, B. Fleming, R. Johnson, L. Haugh, M.H. Pope, A sagittal plane model of the knee and cruciate ligaments with
                application of a sensitivity analysis, J. Biomech. Eng. 118 (1996) 227–239.
           [169] J. Bach, M. Hull, H. Patterson, Direct measurement of strain in the posterolateral bundle of the anterior cruciate ligament, J. Biomech. 30 (1997)
                281–283.
           [170] K.L. Markolf, W.L. Bargar, S.C. Shoemaker, H.C. Amstutz, The role of joint load in knee stability, J. Bone Joint Surg. Am. 63 (1981) 570–585.
           [171] P.A. Torzilli, X. Deng, R.F. Warren, The effect of joint-compressive load and quadriceps muscle force on knee motion in the intact and anterior
                cruciate ligament-sectioned knee, Am. J. Sports Med. 22 (1994) 105–112.
           [172] H.H. Hsieh, P.S. Walker, Stabilizing mechanisms of the loaded and unloaded knee joint, J. Bone Joint Surg. Am. 58 (1976) 87–93.
           [173] G. Li, T.W. Rudy, C. Allen, M. Sakane, S.L. Woo, Effect of combined axial compressive and anterior tibial loads on in situ forces in the anterior
                cruciate ligament: a porcine study, J. Orthop. Res. 16 (1998) 122–127.
           [174] S. Takai, S.L. Woo, G.A. Livesay, D.J. Adams, F.H. Fu, Determination of the in situ loads on the human anterior cruciate ligament, J. Orthop.
                Res. 11 (1993) 686–695.
           [175] K.L. Markolf, D.M. Burchfield, M.M. Shapiro, M.F. Shepard, G.A. Finerman, J.L. Slauterbeck, Combined knee loading states that generate high
                anterior cruciate ligament forces, J. Orthop. Res. 13 (1995) 930–935.




                                                       I. BIOMECHANICS
   199   200   201   202   203   204   205   206   207   208   209