Page 205 - Advances in Biomechanics and Tissue Regeneration
P. 205

REFERENCES                                         199

           [176] B.C. Fleming, P.A. Renstrom, B.D. Beynnon, B. Engstrom, G.D. Peura, G.J. Badger, R.J. Johnson, The effect of weightbearing and external load-
                ing on anterior cruciate ligament strain, J. Biomech. 34 (2001) 163–170.
           [177] E.G. Meyer, R.C. Haut, Excessive compression of the human tibio-femoral joint causes ACL rupture, J. Biomech. 38 (2005) 2311–2316.
           [178] E.G. Meyer, T.G. Baumer, J.M. Slade, W.E. Smith, R.C. Haut, Tibiofemoral contact pressures and osteochondral microtrauma during anterior
                cruciate ligament rupture due to excessive compressive loading and internal torque of the human knee, Am. J. Sports Med. 36 (2008) 1966–1977.
           [179] S.J. Wall, D.M. Rose, E.G. Sutter, S.M. Belkoff, B.P. Boden, The role of axial compressive and quadriceps forces in noncontact anterior cruciate
                ligament injury a cadaveric study, Am. J. Sports Med. 40 (2012) 568–573.
           [180] K.L. Markolf, J.F. Gorek, J.M. Kabo, M.S. Shapiro, Direct measurement of resultant forces in the anterior cruciate ligament. An in vitro study
                performed with a new experimental technique, J. Bone Joint Surg. Am. 72 (1990) 557–567.
           [181] K. Shelburne, M. Torry, M. Pandy, Muscle, ligament, and joint-contact forces at the knee during walking, Med. Sci. Sports Exerc. 37 (2005)
                1948–1956.
           [182] Y.-C. Lin, J.P. Walter, S.A. Banks, M.G. Pandy, B.J. Fregly, Simultaneous prediction of muscle and contact forces in the knee during gait,
                J. Biomech. 43 (2010) 945–952.
           [183] R. Neptune, F. Zajac, S. Kautz, Muscle force redistributes segmental power for body progression during walking, Gait Posture 19 (2004)
                194–205.
           [184] D. Kumar, K.T. Manal, K.S. Rudolph, Knee joint loading during gait in healthy controls and individuals with knee osteoarthritis, Osteoarthr.
                Cartil. 21 (2013) 298–305.
           [185] T.M. Guess, G. Thiagarajan, M. Kia, M. Mishra, A subject specific multibody model of the knee with menisci, Med. Eng. Phys. 32 (2010)
                505–515.
           [186] D.D. D’Lima, S. Patil, N. Steklov, J.E. Slamin, C.W. Colwell Jr., The Chitranjan Ranawat Award: in vivo knee forces after total knee arthroplasty,
                Clin. Orthop. Relat. Res. 440 (2005) 45–49.
           [187] D. Zhao, S.A. Banks, D.D. D’Lima, C.W. Colwell, B.J. Fregly, In vivo medial and lateral tibial loads during dynamic and high flexion activities,
                J. Orthop. Res. 25 (2007) 593–602.
           [188] D.D. D’Lima, N. Steklov, S. Patil, C.W. Colwell, The Mark Coventry Award: in vivo knee forces during recreation and exercise after knee
                arthroplasty, Clin. Orthop. Relat. Res. 466 (2008) 2605–2611.
           [189] D.D. D’Lima, S. Patil, N. Steklov, J.E. Slamin, C.W. Colwell, Tibial forces measured in vivo after total knee arthroplasty, J. Arthroplast. 21 (2006)
                255–262.
           [190] I. Kutzner, S. K€ uther, B. Heinlein, J. Dymke, A. Bender, A.M. Halder, G. Bergmann, The effect of valgus braces on medial compartment load of
                the knee joint–in vivo load measurements in three subjects, J. Biomech. 44 (2011) 1354–1360.
           [191] S. Taylor, P. Walker, J. Perry, S. Cannon, R. Woledge, The forces in the distal femur and the knee during walking and other activities measured
                by telemetry, J. Arthroplast. 13 (1998) 428–437.
           [192] P.F. Catalfamo, G. Aguiar, J. Curi, A. Braidot, Anterior cruciate ligament injury: compensation during gait using hamstring muscle activity,
                Open Biomed. Eng. J. 4 (2010).
           [193] A. Kłodowski, M.E. Mononen, J.P. Kulmala, A. Valkeap€ a€ a, R.K. Korhonen, J. Avela, I. Kiviranta, J.S. Jurvelin, A. Mikkola, Merge of motion
                analysis, multibody dynamics and finite element method for the subject-specific analysis of cartilage loading patterns during gait: differences
                between rotation and moment-driven models of human knee joint, Multibody Syst. Dyn. 37 (2016) 271–290.
           [194] J.P. Walter, D.D. D’Lima, C.W. Colwell, B.J. Fregly, Decreased knee adduction moment does not guarantee decreased medial contact force
                during gait, J. Orthop. Res. 28 (2010) 1348–1354.
           [195] R.K. Jones, G.J. Chapman, L. Forsythe, M.J. Parkes, D.T. Felson, The relationship between reductions in knee loading and immediate pain
                response whilst wearing lateral wedged insoles in knee osteoarthritis, J. Orthop. Res. 32 (2014) 1147–1154.
           [196] D.A. Wilson, J.L.A. Wilson, G. Richardson, M.J. Dunbar, Changes in the functional flexion axis of the knee before and after total knee arthro-
                plasty using a navigation system, J. Arthroplast. 29 (2014) 1388–1393.
           [197] M.R. Mulvey, G.J. Macfarlane, M. Beasley, D.P. Symmons, K. Lovell, P. Keeley, S. Woby, J. McBeth, Modest association of joint hypermobility
                with disabling and limiting musculoskeletal pain: results from a large-scale general population–based survey, Arthritis Care Res. 65 (2013)
                1325–1333.





























                                                       I. BIOMECHANICS
   200   201   202   203   204   205   206   207   208   209   210