Page 26 - Advances in Biomechanics and Tissue Regeneration
P. 26

20                                  1. PERSONALIZED CORNEAL BIOMECHANICS

           [44] M.A. Lago, M.J. Rup  erez, F. Martínez-Martínez, C. Monserrat, E. Larra, J.L. G€ uell, C. Peris-Martínez, A new methodology for the in vivo esti-
               mation of the elastic constants that characterize the patient-specific biomechanical behavior of the human cornea, J. Biomech. 48 (1) (2015) 38–43.
           [45] A. Pandolfi, F. Manganiello, A model for the human cornea: constitutive formulation and numerical analysis, Biomech. Model. Mechanobiol.
               5 (4) (2006) 237–246.
           [46] F. Bao, M. Deng, Q. Wang, J. Huang, J. Yang, C. Whitford, B. Geraghty, A. Yu, A. Elsheikh, Evaluation of the relationship of corneal biome-
               chanical metrics with physical intraocular pressure and central corneal thickness in ex vivo rabbit eye globes, Exp. Eye Res. 137 (2015) 11–17.
           [47] A. Elsheikh, C.W. McMonnies, C. Whitford, G.C. Boneham, In vivo study of corneal responses to increased intraocular pressure loading, Eye
               Vis. 2 (2015) 20.
           [48] C. Whitford, H. Studer, C. Boote, K.M. Meek, A. Elsheikh, Biomechanical model of the human cornea: considering shear stiffness and regional
               variation of collagen anisotropy and density, J. Mech. Behav. Biomed. Mater. 42 (2015) 76–87.
           [49] E. Lanchares, M.A. del Buey, J.A. Cristóbal, L. Lavilla, B. Calvo, Biomechanical property analysis after corneal collagen cross-linking in relation
               to ultraviolet A irradiation time, Graefes Arch. Clin. Exp. Ophthalmol. 249 (8) (2011) 1223–1227.
           [50] R. Navarro, F. Palos, E. Lanchares, B. Calvo, J.A. Cristóbal, Lower- and higher-order aberrations predicted by an optomechanical model of
               arcuate keratotomy for astigmatism, J. Cataract Refract. Surg. 35 (1) (2009) 158–165.
           [51] S. Kling, N. Bekesi, C. Dorronsoro, D. Pascual, S. Marcos, Corneal viscoelastic properties from finite-element analysis of in vivo air-puff defor-
               mation, PLoS ONE 9 (8) (2014) e104904.
           [52] I. Simonini, A. Pandolfi, Customized finite element modelling of the human cornea, PLoS ONE 10 (6) (2015) e0130426.
           [53] I. Simonini, A. Pandolfi, The influence of intraocular pressure and air jet pressure on corneal contactless tonometry tests, J. Mech. Behav. Biomed.
               Mater. 58 (2016) 75–89.
           [54] I. Simonini, M. Angelillo, A. Pandolfi, Theoretical and numerical analysis of the corneal air puff test, J. Mech. Phys. Solids 93 (2016) 118–134.
           [55] M.R. Bryant, P.J. McDonnell, Constitutive laws for biomechanical modeling of refractive surgery, J. Biomech. Eng. 118 (4) (1996) 473–481.
           [56] S. Kok, N. Botha, H.M. Inglis, Calibrating corneal material model parameters using only inflation data: an ill-posed problem, Int. J. Numer.
               Methods Biomed. Eng. 30 (12) (2014) 1460–1475.
           [57] T.C. Gasser, R.W. Ogden, G.A. Holzapfel, Hyperelastic modelling of arterial layers with distributed collagen fibre orientations, J. R. Soc. Inter-
               face 3 (6) (2006) 15–35.
           [58] A. Eilaghi, J.G. Flanagan, I. Tertinegg, C.A. Simmons, G.W. Brodland, C.R. Ethier, G. Wayne Brodland, C. Ross Ethier, Biaxial mechanical testing
               of human sclera, J. Biomech. 43 (9) (2010) 1696–1701.
           [59] M.Á. Ariza-Gracia, D.P. Piñero, J.F. Rodriguez, R.J. P  erez-Cambrodí, B. Calvo, Interaction between diurnal variations of intraocular pressure,
               pachymetry, and corneal response to an air puff: preliminary evidence, JCRS Online Case Rep. 3 (1) (2014) 12–15.
           [60] T. Huseynova, G.O. Waring IV, C. Roberts, R.R. Krueger, M. Tomita, Corneal biomechanics as a function of intraocular pressure and pachy-
               metry by dynamic infrared signal and Scheimpflug imaging analysis in normal eyes, Am. J. Ophthalmol. 157 (4) (2014) 885–893.
           [61] M.Á. Ariza-Gracia, Á. Ortill  es, J.Á. Cristobal, J.F. Rodríguez Matas, B. Calvo, A numerical-experimental protocol to characterize corneal tissue
               with an application to predict astigmatic keratotomy surgery, J. Mech. Behav. Biomed. Mater. 74 (2017) 304–314.
           [62] S. Hayes, C. Boote, J. Lewis, J. Sheppard, M. Abahussin, A.J. Quantock, C. Purslow, M. Votruba, K.M. Meek, Comparative study of fibrillar
               collagen arrangement in the corneas of primates and other mammals, Anat. Rec. Adv. Integr. Anat. Evol. Biol. 290 (12) (2007) 1542–1550.
           [63] J.L. Alió, F. Pierre, B. Ramez, T. Sherwin, L. Buzzonetti an Francesco Versaci, M.W. Belin, A. Renato, F. Cavas-Martínez Jr, F. Bao, in: Alió, J.L.
               (Ed.), Keratoconus: Recent Advances in Diagnosis and Treatments, Springer International Publishing, 2017.
           [64] L. Akaishi, P.F. Tzelikis, I.M. Raber, Ferrara intracorneal ring implantation and cataract surgery for the correction of pellucid marginal corneal
               degeneration, J. Cataract Refract. Surg. 30 (11) (2004) 2427–2430.
           [65] M.A. Zare, H. Hashemi, M.R. Salari, Intracorneal ring segment implantation for the management of Keratoconus: safety and efficacy, J. Cataract
               Refract. Surg. 33 (11) (2007) 1886–1891.
           [66] J.A.P. Gomes, D. Tan, C.J. Rapuano, M.W. Belin, J. Renato Ambrósio, J.L. Guell, F. Malecaze, K. Nishida, V.S. Sangwan, Global consensus on
               Keratoconus and ectatic disease, Cornea 34 (4) (2015) 359–369.
           [67] A. Vega-Estrada, J. Alio, The use of intracorneal ring segments in Keratoconus, Eye Vis. 3 (2016) 8.


           Further Reading
           [68] K. Anderson, A. El-Sheikh, T. Newson, Application of structural analysis to the mechanical behaviour of the cornea, J. R. Soc. Interface 1 (April)
               (2004) 3–15.
           [69] J. Flecha-Lescun, B. Calvo, J. Zurita, M.Á. Ariza-Gracia, Template-based methodology for the simulation of intracorneal segment ring implan-
               tation in human corneas, Biomech. Model. Mechanobiol. 17 (4) (2018) 923–938.





















                                                       I. BIOMECHANICS
   21   22   23   24   25   26   27   28   29   30   31