Page 25 - Advances in Biomechanics and Tissue Regeneration
P. 25
REFERENCES 19
[9] M. Lanza, S. Iaccarino, M. Bifani, In vivo human corneal deformation analysis with a Scheimpflug camera, a critical review, J. Biophotonics
9 (2016) 464–477.
[10] M.Á. Ariza-Gracia, J.F. Zurita, D.P. Piñero, J.F. Rodríguez Matas, B. Calvo, Coupled biomechanical response of the cornea assessed by non-
contact tonometry. A simulation study, PLoS ONE 10 (3) (2015) e0121486.
[11] A. Sinha Roy, M. Kurian, H. Matalia, R. Shetty, Air-puff associated quantification of non-linear biomechanical properties of the human cornea
in vivo, J. Mech. Behav. Biomed. Mater. 48 (April) (2015) 173–182.
[12] M.Á. Ariza-Gracia, J. Zurita, D.P. Piñero, B. Calvo, J.F. Rodríguez Matas, Automatized patient-specific methodology for numerical determina-
tion of biomechanical corneal response, Ann. Biomed. Eng. 44 (5) (2016) 1753–1772.
[13] Z. Hassan, L. Modis, E. Szalai, A. Berta, G. Nemeth, Examination of ocular biomechanics with a new Scheimpflug technology after corneal
refractive surgery, Cont. Lens Anterior Eye 37 (5) (2014) 337–341.
[14] F. Faria-Correia, I. Ramos, B. Valbon, A. Luz, C.J. Roberts, R. Ambrósio Jr, Scheimpflug-based tomography and biomechanical assessment in
pressure-induced stromal keratopathy, J. Refract. Surg. 29 (5) (2013) 356–358.
[15] Y. Hon, A.K.C. Lam, Corneal deformation measurement using Scheimpflug noncontact tonometry, Optom. Vis. Sci. 90 (1) (2013) e1–e8.
[16] S. Kling, S. Marcos, Contributing factors to corneal deformation in air puff measurements, Invest. Ophthalmol. Vis. Sci. 54 (7) (2013) 5078–5085.
[17] M.Á. Ariza-Gracia, S. Redondo, D.P. Llorens, B. Calvo, J.F. Rodríguez Matas, A predictive tool for determining patient-specific mechanical
properties of human corneal tissue, Comput. Methods Appl. Mech. Eng. 317 (2016) 226–247.
[18] T. Seiler, M. Matallana, S. Sendler, T. Bende, Does Bowman’s layer determine the biomechanical properties of the cornea? Refract. Corneal Surg.
8 (2) (1992) 139–142.
[19] E.L. Sancho, Modelado Biomecánico de los componentes refractivos del ojo humano y tratamientos refractivos asociados (Ph.D. thesis), Uni-
versidad de Zaragoza, 2010.
[20] M. Winkler, G. Shoa, Y. Xie, S.J. Petsche, P.M. Pinsky, T. Juhasz, D.J. Brown, J.V. Jester, Three-dimensional distribution of transverse collagen
fibers in the anterior human corneal stroma, Invest. Ophthalmol. Vis. Sci. 54 (12) (2013) 7293–7301.
[21] M. Winkler, G. Shoa, S.T. Tran, Y. Xie, S. Thomasy, V.K. Raghunathan, C. Murphy, D.J. Brown, J.V. Jester, A comparative study of vertebrate
corneal structure: the evolution of a refractive lens, Invest. Ophthalmol. Vis. Sci. 56 (4) (2015) 2764–2772.
[22] S.J. Petsche, D. Chernyak, J. Martiz, M.E. Levenston, P.M. Pinsky, Depth-dependent transverse shear properties of the human corneal stroma,
Invest. Opthalmol. Vis. Sci. 53 (2) (2012) 873.
[23] M. Winkler, D. Chai, S. Kriling, C.J. Nien, D.J. Brown, B. Jester, T. Juhasz, J.V. Jester, Nonlinear optical macroscopic assessment of 3-D corneal
collagen organization and axial biomechanics, Invest. Ophthalmol. Vis. Sci. 52 (12) (2011) 8818–8827.
[24] A. Benoit, G. Latour, S.-K. Marie-Claire, J.-M. Allain, Simultaneous microstructural and mechanical characterization of human corneas at
increasing pressure, J. Mech. Behav. Biomed. Mater. 60 (2016) 93–105.
[25] A. Pandolfi, G.A. Holzapfel, Three-dimensional modeling and computational analysis of the human cornea considering distributed collagen
fibril orientations, J. Biomech. Eng. 130 (6) (2008) 61006.
[26] J.B. Randleman, D.G. Dawson, H.E. Grossniklaus, B.E. McCarey, H.F. Edelhauser, Depth-dependent cohesive tensile strength in human donor
corneas: implications for refractive surgery, J. Refract. Surg. 24 (1) (2008) S85–S89.
[27] M. Lombardo, G. Lombardo, D.J. Friend, S. Serrao, M.A. Terry, Long-term anterior and posterior topographic analysis of the cornea after deep
lamellar endothelial keratoplasty, Cornea 28 (4) (2009) 408–415.
[28] M. Lombardo, G. Lombardo, G. Carbone, M.P. De Santo, R. Barberi, S. Serrao, Biomechanics of the anterior human corneal tissue investigated
with atomic force microscopy, Invest. Opthalmol. Vis. Sci. 53 (2) (2012) 1050.
[29] S. Dorairaj, J.M. Liebmann, R. Ritch, Quantitative evaluation of anterior segment parameters in the era of imaging, Trans. Am. Ophthalmol. Soc.
105 (2007) 99–108. discussion 108–110.
[30] M.Q. Salomão, A. Esposito, W.J. Dupps, Advances in anterior segment imaging and analysis, Curr. Opin. Ophthalmol. 20 (4) (2009) 324–332.
[31] D.P.S. O’Brart, D.C. Saunders, M.C. Corbett, E.S. Rosent, The corneal topography of Keratoconus, Eur. J. Implant Refract. Surg. 7 (1) (1995)
20–30.
[32] A. Agarwal, A. Argawal, S. Jacob, Textbook on Corneal Topography. Including Pentacam and Anterior Segment OCT, second ed., Jaypee
Brothers Medical Publishers (P) Ltd Corporate, New Delhi, 2010, p. 397.
[33] M.M. Sinjab, Corneal Topography in Clinical Practice (Pentacam System). Basics & Clinical Interpretation, second ed., Jaypee Brothers Medical
Publishers (P) Ltd Corporate, New Delhi, 2012, p. 233.
[34] A. Garg, J.L. Alio, B. Pajic, C.K. Mehta, Mastering the Techniques of LASIK, EPILASIK, and LASEK: Techniques and Technology, Jaypee
Brothers Medical Publishers, New Delhi, 2007, p. 394.
[35] D.P. Piñero, N. Alcón, In vivo characterization of corneal biomechanics, J. Cataract Refract. Surg. 40 (6) (2014) 870–887.
[36] D.P. Piñero, N. Alcón, Corneal biomechanics: a review, Clin. Exp. Optom. 98 (2) (2015) 107–116.
[37] M. Kaschke, K.-H. Donnerhacke, M.S. Rill, Optical Devices in Ophthalmology and Optometry. Technology, Design Principles, and Clinical
Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2014, p. 625.
[38] A. Bedei, I. Appolloni, A. Madesani, A. Pietrelli, S. Franceschi, L. Barabesi, Repeatability and agreement of 2 Scheimpflug analyzers in mea-
suring the central corneal thickness and anterior chamber angle, volume, and depth, Eur. J. Ophthalmol. 22 (suppl. 7) (2012) 29–32.
[39] G. Savini, P. Barboni, M. Carbonelli, K.J. Hoffer, Accuracy of corneal power measurements by a new Scheimpflug camera combined with
Placido-disk corneal topography for intraocular lens power calculation in unoperated eyes, J. Cataract Refract. Surg. 38 (5) (2012) 787–792.
[40] R. Montalbán, D.P. Piñero, J. Javaloy, J.L. Alió, Intrasubject repeatability of corneal morphology measurements obtained with a new Scheimp-
flug photography-based system, J. Cataract Refract. Surg. 38 (6) (2012) 971–977.
[41] P.M. Pinsky, D. van der Heide, D. Chernyak, Computational modeling of mechanical anisotropy in the cornea and sclera, J. Cataract Refract.
Surg. 31 (1) (2005) 136–145.
[42] E. Lanchares, B. Calvo, J.A. Cristóbal, M. Doblar e, Finite element simulation of arcuates for astigmatism correction, J. Biomech. 41 (4) (2008)
797–805.
[43] F. Riveros, S. Chandra, E.A. Finol, T.C. Gasser, J.F. Rodriguez, A pull-back algorithm to determine the unloaded vascular geometry in aniso-
tropic hyperelastic AAA passive mechanics, Ann. Biomed. Eng. 41 (4) (2013) 694–708.
I. BIOMECHANICS