Page 406 - Advances in Biomechanics and Tissue Regeneration
P. 406

REFERENCES                                         403

            [8] F.W. Neukam, T.F. Flemmig, Working Group 3, Local and systemic conditions potentially compromising osseointegration, Clin. Oral Implants
               Res. 17 (S2) (2006) 160–162, https://doi.org/10.1111/j.1600-0501.2006.01359.x.
            [9] R. Adell, U. Lekholm, B. Rockler, P.I. Brånemark, A 15-year study of osseointegrated implants in the treatment of the edentulous jaw, Int. J. Oral
               Surg. 10 (6) (1981) 387–416, https://doi.org/10.1016/S0300-9785(81)80077-4.
           [10] P.I. Branemark, Osseointegration and its experimental background, J. Prosthet. Dent. 50 (3) (1983) 399–410, https://doi.org/10.1016/S0022-
               3913(83)80101-2.
           [11] T. Albrektsson, T. Jansson, U. Lekholm, Osseointegrated dental implants, Dent. Clin. N. Am. 30 (1) (1986) 151–174.
           [12] S.S. Al-Johany, M.D. Al Amri, S. Alsaeed, B. Alalola, Dental implant length and diameter: a proposed classification scheme, J. Prosthodont. 26 (3)
               (2017) 252–260, https://doi.org/10.1111/jopr.12517.
           [13] J. Belinha, Meshless Methods in Biomechanics—Bone Tissue Remodelling Analysis, Springer International Publishing, Switzerland, 2014.
           [14] M.M.A. Peyroteo, J. Belinha, S. Vinga, L.M.J.S. Dinis, R.M. Natal Jorge, Mechanical bone remodelling: comparative study of distinct numerical
               approaches, Eng. Anal. Bound. Elem. (2018), https://doi.org/10.1016/J.ENGANABOUND.2018.01.011.
           [15] J. Belinha, L.M.J.S. Dinis, R.M. Natal Jorge, The mandible remodeling induced by dental implants: a meshless approach, J. Mech. Med. Biol.
               15 (04) (2015) 1550059, https://doi.org/10.1142/S0219519415500591.
                                 ˘
           [16] O. Kayabaşı,E. Y€ uzbasıoglu, F. Erzincanlı, Static, dynamic and fatigue behaviors of dental implant using finite element method, Adv. Eng.
               Softw. 37 (10) (2006) 649–658, https://doi.org/10.1016/J.ADVENGSOFT.2006.02.004.
           [17] H.J. Meijer, F.J. Starmans, W.H. Steen, F. Bosman, A three-dimensional, finite-element analysis of bone around dental implants in an edentulous
               human mandible, Arch. Oral Biol. 38 (6) (1993) 491–496, https://doi.org/10.1016/0003-9969(93)90185-O.
           [18] H.-Y. Chou, J.J. Jagodnik, S. M€ uft€ u, Predictions of bone remodeling around dental implant systems, J. Biomech. 41 (6) (2008) 1365–1373, https://
               doi.org/10.1016/j.jbiomech.2008.01.032.
           [19] K.-J. Bathe, Finite Element Procedures, Prentice Hall, Pearson Education, Inc., New Jersey, 1996.
           [20] J.G. Wang, G.R. Liu, A point interpolation meshless method based on radial basis functions, Int. J. Numer. Methods Eng. 54 (11) (2002)
               1623–1648, https://doi.org/10.1002/nme.489.
           [21] J. Belinha, R.M.N. Jorge, L.M.J.S. Dinis, A meshless microscale bone tissue trabecular remodelling analysis considering a new anisotropic bone
               tissue material law, Comput. Methods Biomech. Biomed. Engin. 16 (11) (2013) 1170–1184, https://doi.org/10.1080/10255842.2012.654783.
           [22] P. Zioupos, R.B. Cook, J.R. Hutchinson, Some basic relationships between density values in cancellous and cortical bone, J. Biomech. 41 (9) (2008)
               1961–1968, https://doi.org/10.1016/j.jbiomech.2008.03.025.
           [23] G. Watzak, W. Zechner, C. Ulm, S. Tangl, G. Tepper, G. Watzek, Histologic and histomorphometric analysis of three types of dental implants
               following 18 months of occlusal loading: a preliminary study in baboons, Clin. Oral Implants Res. 16 (4) (2005) 408–416, https://doi.org/
               10.1111/j.1600-0501.2005.01155.x.
















































                                          II. MECHANOBIOLOGY AND TISSUE REGENERATION
   401   402   403   404   405   406   407   408   409   410   411