Page 422 - Advances in Biomechanics and Tissue Regeneration
P. 422
420 Index
Smooth muscle cell (SMC) biomechanics Thixotropy, 283 trabecular morphology, 409–411
(Continued) 3-D hydrogels, 382 X-ray images, 408, 408f
stress distribution, 105 Three-dimensional fiber distribution, hip prosthesis, 405
subcellular behavior, 103–105, 104–105t biventricle heart, 143f implants, 405
helical disposition, 101 Three-dimensional (3-D) finite element (FE) osseointegration, 406
intracellular connections, 103 model primary arthroplasty, 405
mechanical homeostasis, 108–109 cancellous bone (see Calcaneal bone harvest) revision arthroplasty, 405
mechanosensing, 106–107, 106f cortical bone, 242 Trabecular bone representative volume
mechanotransduction, 108 foot bones, 242 element (RVE), 203–208, 207f
phenotypic switching characteristics, 107t Three-dimensional (3D) MLS scheme, 141 Trabecular structure, mandibular bone
structure, 100–101 3D phenomenological numerical model, cell finite element method, 399–401f
Soft 3-D implant printing, elastomers, 274 migration, 289–290 natural neighbor radial point interpolation
Song model stents, 38 3-D printing method, 399–401f
Spatial-temporal discretization, 124–125 cost efficiency, 279–280 Tracheal stents, 275
Spherical power, 14–15 customization and personalization, 279 Tracheobronchial stenosis, 276, 278f, 279
Staurosporine-induced redifferentiation, 383 natural hydrogels, 272–273, 272t Traction force, 292–294
Stents silicone implant (see Silicone implant, 3-D Transforming growth factor-β (TGF-β), 374,
biocompatibility, 33 printing) 380–381, 383
cardiovascular ischemia, 33 synthetic hydrogels, 272t, 273–274 Transitional zone, articular cartilage,
colonic (see Colonic stents) time efficiency, 280 365–366
geometry, 33 Three-element Windkessel (WK) model, Translocation, cell migration, 288f
Stent shortening, 36, 36f 144 Transverse elastic modulus, 205–206
Stereolithography (STL), 80–81 Threshold model, 319 Triangular background integration mesh, 406
Stokes’ drag, 294 Time average wall shear stress (TAWSS), Tricortical bone grafts, 241
Strain energy density function (SEDF), 85–86, 85 Truly meshless method, 24
85–86t Time standardization process, heart cycle TTS Niti-S Colorectal Stent, 35t
Strain energy function (SEF), 63–64, 99–100 modeling, 140 Tumor microenvironment (TME), 313–314
Stress conventional PODI calculation, 147–149 Two-parameter sigmoid model, 330
aortic wall, 99–100, 105 MLS interpolation scheme, 149
calcaneal bone harvest phase-change time steps, 149 U
maximum principal stress, 243, 244f, 246, simulation timeline, 147 Ulcerative colitis, 33
247f standardized timeline, 147–149 Ultraflex stent, 35t,38–40, 40f,44
minimum principal stress, 245–246, 245f, temporal PODI calculations, 147–149 Umbilical cord, 371
248f volume change-driven calculation, 147 Umbilical cord blood–derived mesenchymal
skin, 345, 345f Tissue engineering stem cells (CB-MSCs), 371
Stress-strain apical behavior, cornea, 12t cartilage Uniaxial mechanical test, 45, 66, 346–347
Suction testing, skin, 349–350 articular cartilage (see Articular cartilage) User-defined element subroutine (UEL), 300
Sulfated glycosaminoglycan (GAG), mesenchymal stem cells User-defined material subroutine (UMAT),
363–364 (see Chondrogenesis, mesenchymal 49
Superficial zone, articular cartilage, 365–366 stem cells)
Superficial zone protein (SZP), 379 cell adhesion, 253 V
Surface continuation algorithm, 6–7 collagen magnetic scaffolds, 261 Vanilloid 4 (TRPV4), 386–387
Symphony stent, 40, 41f electric and electromechanical clues Variable cell morphology, 291
Synovial fluid-mesenchymal stem cells active polymers, 256 Vascular endothelial growth factor (VEGF),
(SF-MSCs), 372 cell response and fate, 257–259t 315, 368
Synovial joints, 365–366 piezoelectric polymers, 256–259 Vascular fractal network
Synovial liquid, 365 electric and mechanical clues asymmetry ratios, 83
Synoviocytes, 365 bones, 254 boundary conditions, 83, 83f
Synovium, 372 cardiac tissue, 254 Olufsen model, 84
collagen, 254 scaling parameters, 84
T nerve tissues, 254–255 Vascular impedance, 84
Tangential zone, articular cartilage, 365–366 principles, 255–256 Vascular layer, eye, 4–5
Temporal proper orthogonal decomposition external stimuli, 253 Vascular smooth muscles (VSMs), 63
with interpolation method, 146–149, magnetic nanomaterials, 259–261 Vascular tissue, mechanical behavior.
147f physical signals, 253 See Carotid artery
Tenascin, 364 polymer-based magnetoelectric composites, Vertigo, 21
Tensile properties, articular cartilage, 183 261 benign paroxysmal positional vertigo, 23
Tensile testing, skin Titanium implant, 409 prevalence, 23
biaxial tests, 348 Total hip arthroplasty (THA) Vestibular dysfunction
steps involved, 347f bone remodeling after diagnosis, 23–24
uniaxial tests, 346–347, 349t computational model, 408–409 symptoms, 21–22
Ten Tusscher model, 123–124, 123f load cases specifications, 409t Vestibular system biomechanics
Territorial matrix, 365 material properties, 409 fluids in, 22
Tetrahedral mesh, 47 natural and essential boundary material constituents, 22
Thermotactic motility matrix, 320 conditions, 408–409, 409f neural information transition, 21
Thermotaxis, 288, 295 trabecular groups, 409f otolithic structures, 22