Page 419 - Advances in Biomechanics and Tissue Regeneration
P. 419

Index                                           417

           Hydrostatic pressure, mesenchymal stem cells  K                       Low-threshold mechanoreceptors (LTMRs),
                chondrogenesis, 385–386       Keratinocyte mechanobiology            351
           Hyperplasia, 108                     compression force, 351           Lubricin, 364, 379
                                                tension mechanical loading, 351, 352–353t
           I                                  Keratoconus (KTC)                  M
           Imaginary equilibrium plane (IEP), 302–304  incidence, 3              Macula, 22
           Impedance-based method, 82–83        intrastromal corneal ring segments  Magnetic nanomaterials, 259–261
           Implant failure, 405–406                implantation, 15–16           Mandibular bone remodeling, dental implant
           Indentation test, skin, 348–349, 350f  Kernel function, 24–25          bone apparent density distribution map,
           Inelasticity, skin, 345            Kharhunen-Loève decomposition (KLD), 145  402f
           Inflation test, 9                  Kinematics-driven optimization approach,  computational model
           Initial Graphics Exchange Specification (IGES)  185                      boundary conditions, 394–395, 395f, 396t
                file, 80–81                   Knee adduction moment (KAM), 193      single dental implant, 394, 394f, 395t
           Inkjet-based bioprinting, 270      Knee joint biomechanics             elasticity modulus, 398
           Insulin-like growth factor family (IGFs), 374  cartilage, 182          finite element method
           Integrins, 350–351, 380–381          joint loading and boundary conditions  nodal distribution, 396
           Interterritorial matrix, 365          adduction-abduction (add-abd) rotations,  trabecular structure, 399–401f
           Intima, 98                              185                            four loading case scenario, 398–399
           Intracellular mechanotransduction,    anterior cruciate ligament rupture,  mechanical analysis, 397
                384–385                            186–187                        natural neighbor radial point interpolation
           Intramedullary nails, femoral fracture  closed kinetic chain squat exercises, 186  method
             anterograde nails, 218              femoral flexion-extension (F-E), 185  nodal distribution, 396, 396f
             distal screws, 218                  femoral posterior drawer force, 186  trabecular structure, 399–401f
             finite element simulation models, 225f  internal-external (I-E) rotations, 185  numerical discretization, 396
               axial micromotion, 231, 233–234f  joint instability and artifact moments, 185  resorption, 397–398
               boundary conditions, 227f         mechanical balance point, 185, 186f  Mass-spring model, 139–140
               configuration, 229–230t           passive tibiofemoral joint, 185–186  Matrix-induced autologous chondrocyte
               contrast tomodensitometry images,  quadriceps and hamstring muscle forces,  implantation (MACI), 372
                220                                186                           Matrix metalloproteases (MMPs), 97, 366
               deformed shape and vertical displacement  2D and 3D model, 187    Maturation index (MI), 299
                maps, 230, 231–232f             joint stability analyses, 188, 188f  Maximum corneal displacement, 4
               femur volume, 221, 222f          ligaments, 182                   Mean apparent density, 407–408
               final mesh, 224f                 meniscus, 182–183                Mean interception length (MIL), 203
               fracture healing period, 235, 238t  passive finite element (FE) model, 183–184,  Mechanical balance point (MBP), 185, 186f
               geometric models, 219, 220f         184f                          Mechanical parameters of stent, 36–37, 36f
               global movement, 233, 235–236f   validation, 189–192              Mechanoreceptors, 350–351
               interpolation technique, 222   K-nn approach. See Neighborhood-based  Mechanoregulatory models, 201–202
               load conditions, 227f               protocol (K-nn search method)  Mechanotactic motility matrix, 320
               material properties, 226t      Kolmogorov-Smirnov test, 10        Mechanotaxis
               mechanical strength, 219         material parameters, 11t          drag force, 294–295
               mesh statistics, 225, 226t       stress-strain apical behavior, 12t  mechanosensing, 291, 291f
               Mimics and bone cut polylines, 221,  Komarova’s model, 201–202     mesenchymal cell differentiation and
                222f                                                                 proliferation
               NX I-DEAS software, 222        L                                     average cell traction force, 307f
               osteosynthesis, 228–229        Lagrange multiplier method, 144       cell phenotype vs. ECM stiffness, 306
               proximal femur geometry, 219, 221f  Lagrangian formulation, 86       extracellular matrix stiffness, 304, 306
               simulated gait cycle, 227f     Laminin, 364                          neuroblast, chondrocyte, and osteoblast
               smoothed and treated geometry, 221f  Laplace law, 98                  lineage specifications, 304–306
               Stryker S2 model, 221, 223–224f  Large bowel cancer, 33–34         protrusion force, 294
               3D FE model, 219, 220f         Laryngeal stenosis, 276             traction force
               Von Mises stress maps, 237–238f  endoscopic management, 278f         cell deformation, 293f
               workflow, 228f                   silicone ORL implant, 277, 278f     cell strain, 292
             nail locking, 218                Laser-based bioprinting, 270, 271t    cell stress, 292
             nail material, 218               Laser-cutting technique, 53           effective stress, 292
             vs. osteosynthesis plates, 218   Laser in situ keratomileusis (LASIK), 3  local volumetric strain, 292
             reamed nails, 216                Lateral collateral ligament (LCL), 182  net traction force, 292–293
             unreamed nails, 216              Levenberg-Marquardt algorithm, 69, 165  resultant traction force, 293f
           Intraocular pressure (IOP), 3–4    Ligaments, 182                        unidimensional constitutive behavior,
           Intrastromal corneal ring segments (ICRS)  Limbus, 7                      292
                implantation, 15–16           Liquid deposition modeling (LDM), 281  Mechanotransduction
           Ionic channels, 122                Local stiffness matrix, 397, 406–407  chondrogenesis
           Ionic current, 117                 Logistic growth model, 319            cadherins, 380–381
           Ionic models, 116                  Longitudinal adaptability, stents, 36f,37  focal adhesions, 380
                                              Longitudinal flexibility, stents, 36f,37  integrins, 380–381
           J                                  Lower extremity musculoskeletal (MS) model,  intracellular, 384–385
           Joint stability analyses, 188           184–185                          mechanosensitive elements, 380
   414   415   416   417   418   419   420   421   422   423   424