Page 419 - Advances in Biomechanics and Tissue Regeneration
P. 419
Index 417
Hydrostatic pressure, mesenchymal stem cells K Low-threshold mechanoreceptors (LTMRs),
chondrogenesis, 385–386 Keratinocyte mechanobiology 351
Hyperplasia, 108 compression force, 351 Lubricin, 364, 379
tension mechanical loading, 351, 352–353t
I Keratoconus (KTC) M
Imaginary equilibrium plane (IEP), 302–304 incidence, 3 Macula, 22
Impedance-based method, 82–83 intrastromal corneal ring segments Magnetic nanomaterials, 259–261
Implant failure, 405–406 implantation, 15–16 Mandibular bone remodeling, dental implant
Indentation test, skin, 348–349, 350f Kernel function, 24–25 bone apparent density distribution map,
Inelasticity, skin, 345 Kharhunen-Loève decomposition (KLD), 145 402f
Inflation test, 9 Kinematics-driven optimization approach, computational model
Initial Graphics Exchange Specification (IGES) 185 boundary conditions, 394–395, 395f, 396t
file, 80–81 Knee adduction moment (KAM), 193 single dental implant, 394, 394f, 395t
Inkjet-based bioprinting, 270 Knee joint biomechanics elasticity modulus, 398
Insulin-like growth factor family (IGFs), 374 cartilage, 182 finite element method
Integrins, 350–351, 380–381 joint loading and boundary conditions nodal distribution, 396
Interterritorial matrix, 365 adduction-abduction (add-abd) rotations, trabecular structure, 399–401f
Intima, 98 185 four loading case scenario, 398–399
Intracellular mechanotransduction, anterior cruciate ligament rupture, mechanical analysis, 397
384–385 186–187 natural neighbor radial point interpolation
Intramedullary nails, femoral fracture closed kinetic chain squat exercises, 186 method
anterograde nails, 218 femoral flexion-extension (F-E), 185 nodal distribution, 396, 396f
distal screws, 218 femoral posterior drawer force, 186 trabecular structure, 399–401f
finite element simulation models, 225f internal-external (I-E) rotations, 185 numerical discretization, 396
axial micromotion, 231, 233–234f joint instability and artifact moments, 185 resorption, 397–398
boundary conditions, 227f mechanical balance point, 185, 186f Mass-spring model, 139–140
configuration, 229–230t passive tibiofemoral joint, 185–186 Matrix-induced autologous chondrocyte
contrast tomodensitometry images, quadriceps and hamstring muscle forces, implantation (MACI), 372
220 186 Matrix metalloproteases (MMPs), 97, 366
deformed shape and vertical displacement 2D and 3D model, 187 Maturation index (MI), 299
maps, 230, 231–232f joint stability analyses, 188, 188f Maximum corneal displacement, 4
femur volume, 221, 222f ligaments, 182 Mean apparent density, 407–408
final mesh, 224f meniscus, 182–183 Mean interception length (MIL), 203
fracture healing period, 235, 238t passive finite element (FE) model, 183–184, Mechanical balance point (MBP), 185, 186f
geometric models, 219, 220f 184f Mechanical parameters of stent, 36–37, 36f
global movement, 233, 235–236f validation, 189–192 Mechanoreceptors, 350–351
interpolation technique, 222 K-nn approach. See Neighborhood-based Mechanoregulatory models, 201–202
load conditions, 227f protocol (K-nn search method) Mechanotactic motility matrix, 320
material properties, 226t Kolmogorov-Smirnov test, 10 Mechanotaxis
mechanical strength, 219 material parameters, 11t drag force, 294–295
mesh statistics, 225, 226t stress-strain apical behavior, 12t mechanosensing, 291, 291f
Mimics and bone cut polylines, 221, Komarova’s model, 201–202 mesenchymal cell differentiation and
222f proliferation
NX I-DEAS software, 222 L average cell traction force, 307f
osteosynthesis, 228–229 Lagrange multiplier method, 144 cell phenotype vs. ECM stiffness, 306
proximal femur geometry, 219, 221f Lagrangian formulation, 86 extracellular matrix stiffness, 304, 306
simulated gait cycle, 227f Laminin, 364 neuroblast, chondrocyte, and osteoblast
smoothed and treated geometry, 221f Laplace law, 98 lineage specifications, 304–306
Stryker S2 model, 221, 223–224f Large bowel cancer, 33–34 protrusion force, 294
3D FE model, 219, 220f Laryngeal stenosis, 276 traction force
Von Mises stress maps, 237–238f endoscopic management, 278f cell deformation, 293f
workflow, 228f silicone ORL implant, 277, 278f cell strain, 292
nail locking, 218 Laser-based bioprinting, 270, 271t cell stress, 292
nail material, 218 Laser-cutting technique, 53 effective stress, 292
vs. osteosynthesis plates, 218 Laser in situ keratomileusis (LASIK), 3 local volumetric strain, 292
reamed nails, 216 Lateral collateral ligament (LCL), 182 net traction force, 292–293
unreamed nails, 216 Levenberg-Marquardt algorithm, 69, 165 resultant traction force, 293f
Intraocular pressure (IOP), 3–4 Ligaments, 182 unidimensional constitutive behavior,
Intrastromal corneal ring segments (ICRS) Limbus, 7 292
implantation, 15–16 Liquid deposition modeling (LDM), 281 Mechanotransduction
Ionic channels, 122 Local stiffness matrix, 397, 406–407 chondrogenesis
Ionic current, 117 Logistic growth model, 319 cadherins, 380–381
Ionic models, 116 Longitudinal adaptability, stents, 36f,37 focal adhesions, 380
Longitudinal flexibility, stents, 36f,37 integrins, 380–381
J Lower extremity musculoskeletal (MS) model, intracellular, 384–385
Joint stability analyses, 188 184–185 mechanosensitive elements, 380