Page 416 - Advances in Biomechanics and Tissue Regeneration
P. 416

414                                               Index

           Biventricle heart model (Continued)  mass-spring model, 139–140        constant cell shape, 298
               coarse template discretization, 170–172  mathematical models, 139  extracellular matrix
               refined template discretization, 172–175  passive stress, 142        and cell parameters, 301t
             mesh discretizations, 165, 166t    patient-specific heart simulations, 139  depth, 300
             orthotropic material law, 165      reduced order method, 140           initial cell radius, 300
             passive material parameters, 166t  Windkessel model, 144               multisignaling, 300–304
             problem at hand (BV-R), 166–167, 167f  Cardiac tissue, 254           electrotaxis, 288, 295–296
             three-dimensional geometry, 164, 165f  Carotid artery                external mechanical force, 287
             ventricular pressure, 166t         material models                   force equilibrium, 297
           Blood flow modeling, 85               classical neo-Hookean SEF, 67    mechanotaxis, 291–295
           Bone marrow mesenchymal stromal/      cross-linked phenomenological model,  mesenchymal stem cell differentiation and
                stem cells (BM-MSCs), 369          67–68                              apoptosis, 298–299
           Bone morphogenetic proteins subfamily  free energy density function, 66  numerical modeling, 289–290
                (BMPs), 374                      microstructural model, 68–69     physicochemical factors, 287
           Bone remodeling model                 phenomenological model, 67       physiological process regulation, 287
             after total hip arthroplasty (see Total  two-point deformation gradient tensor, 66  spatiotemporal dynamics, 289–290
                hip arthroplasty)               porcine carotid artery            steps involved, 288, 288f
             anisotropic mechanical properties, 202  biaxial mechanical test, 72  stimuli, 287
             Carter’s model, 201–202             collagen fiber distribution, 64–65, 66t  thermotaxis, 288
             fabric tensor concept, 202          confocal laser scanning microscopy  3D matrices, 289
             finite element method, 202            imaging, 72–73                 tissue development, 287
             isotropic material, 202             histological analysis, 64–65, 65f,72–73  two-dimensional (2D) surfaces, 289
             Komarova’s model, 201–202           Levenberg-Marquardt minimization  wound healing, 287
             material law, 201–202                 algorithm, 69                 Cell morphological index (CMI), 298
             mechanical analysis, 406–407        material constants, 75–76t      Cell morphology analysis, chondrogenesis,
             mechanoregulatory model, 201–202    microfiber model, 74–75              384f
             meshless methods, 202               phenomenological model, 73–74   Cell proliferation, 299–300
             phenomenological law, 407–408       simulation results, 70f         Cellular differentiation, 288
             preprocessing, 406                  structural model, 74            Cellular senescence, articular cartilage,
             remodeling points, 407              uniaxial mechanical test, 66         366–367
             trabecular bone representative volume  Carotid hemodynamics         CFD studies. See Computational fluid
                element (see Homogenization     inflow and outflow conditions, 84     dynamics (CFD) studies
                technique, trabecular bone RVE)  structural modeling, 86         Chemoattraction, 288
             Wolff’s law, 201–202             Carotid inflow, 82                 Chemotactic motility matrix, 320
           Buckling analysis, 188             Carreau-Yasuda model, 85           Chemotaxis, 288, 295
           Buckling resistance, stents, 36f,37  Carter’s model, 201–202          Chitinase 3-like-1 (CHI3L1), 364
                                              Cartilage stem/progenitor cells (CSPCs), 369  Chitosan (CHT), 373
           C                                  Cartilage tissue, 182              Chondrocytes
           Cadherins, 380–381                   avascular nature, 361–362         cartilage repair issues, 369
           Calcaneal bone harvest               cartilage cells, 362–363          cell shape, 383
             Achilles tendon traction, 243      extracellular matrix turnover, 366  cytoplasm, 362
             heel fracture, 241                 hyaline cartilage extracellular matrix, 363–365  density, 363
             incisional symptoms, 241           matrices, 362                     differentiation, 362f
             mechanical properties, 242         osteoarthritis, 367–368           fluid flow, 386
             peripheral cortical layer, 247–248  perichondrium, 361–362           hydrostatic pressure, 385
             sequential elimination, 243        synovial joints, 365–366          mechanotransduction, 386–387
             talus and Achilles tendon load   Cartilage tissue engineering        mitosis, 362
               cortical thickness, 247–248      articular cartilage (see Articular cartilage)  morphological changes, 383
               displacements, 243t, 246t        mesenchymal stem cells            nasal septal cartilage, 369
               maximum principal stress, 243, 244f, 246,  (see Chondrogenesis, mesenchymal  shear stress, 386
                247f                               stem cells)                    stiffness, 381
               minimum principal stress, 245–246, 245f,  Cell adhesion, 253      Chondrogenesis, mesenchymal stem cells
                248f                          Cell-cell attraction, 288–289       computational modeling, 387–388
             tricortical bone grafts, 241     Cell death, 330                     external mechanical signals
           Calcified zone, articular cartilage, 365–366  Cell deformation, 293f     calcium signaling cascades, 386–387
           Calcium signaling, 386–387         Cell displacement, 298                compression, 385–386
           Cancer                             Cell internal deformation, 298–299    fluid flow, 386
             astrocytoma, 314                 Cell-laden hydrogel, 272              fluid shear stresses, 387
             glioblastoma (see Glioblastoma (GBM))  Cell migration                  shear stress, 386
             incidence, 313                     cell-cell attraction, 288–289     extracellular cues
             microenvironments, 313             cell differentiation, 290           cell shape and dynamic morphological
             2D cultures, 314                   cell extension and retraction, 297f   changes, 383
           Cardiac mechanics                    cell proliferation, 299–300         intracellularmechanotransduction,384–385
             active stress, 142–144             cell shape change and remodeling, 298  stiffness, 381–382
             computational calculations, 139    cellular differentiation, 288       substrate topography, 383–384, 384f
             linear finite element method, 139–140  chemotaxis, 288, 295          in vitro systems, 387–388
   411   412   413   414   415   416   417   418   419   420   421