Page 416 - Advances in Biomechanics and Tissue Regeneration
P. 416
414 Index
Biventricle heart model (Continued) mass-spring model, 139–140 constant cell shape, 298
coarse template discretization, 170–172 mathematical models, 139 extracellular matrix
refined template discretization, 172–175 passive stress, 142 and cell parameters, 301t
mesh discretizations, 165, 166t patient-specific heart simulations, 139 depth, 300
orthotropic material law, 165 reduced order method, 140 initial cell radius, 300
passive material parameters, 166t Windkessel model, 144 multisignaling, 300–304
problem at hand (BV-R), 166–167, 167f Cardiac tissue, 254 electrotaxis, 288, 295–296
three-dimensional geometry, 164, 165f Carotid artery external mechanical force, 287
ventricular pressure, 166t material models force equilibrium, 297
Blood flow modeling, 85 classical neo-Hookean SEF, 67 mechanotaxis, 291–295
Bone marrow mesenchymal stromal/ cross-linked phenomenological model, mesenchymal stem cell differentiation and
stem cells (BM-MSCs), 369 67–68 apoptosis, 298–299
Bone morphogenetic proteins subfamily free energy density function, 66 numerical modeling, 289–290
(BMPs), 374 microstructural model, 68–69 physicochemical factors, 287
Bone remodeling model phenomenological model, 67 physiological process regulation, 287
after total hip arthroplasty (see Total two-point deformation gradient tensor, 66 spatiotemporal dynamics, 289–290
hip arthroplasty) porcine carotid artery steps involved, 288, 288f
anisotropic mechanical properties, 202 biaxial mechanical test, 72 stimuli, 287
Carter’s model, 201–202 collagen fiber distribution, 64–65, 66t thermotaxis, 288
fabric tensor concept, 202 confocal laser scanning microscopy 3D matrices, 289
finite element method, 202 imaging, 72–73 tissue development, 287
isotropic material, 202 histological analysis, 64–65, 65f,72–73 two-dimensional (2D) surfaces, 289
Komarova’s model, 201–202 Levenberg-Marquardt minimization wound healing, 287
material law, 201–202 algorithm, 69 Cell morphological index (CMI), 298
mechanical analysis, 406–407 material constants, 75–76t Cell morphology analysis, chondrogenesis,
mechanoregulatory model, 201–202 microfiber model, 74–75 384f
meshless methods, 202 phenomenological model, 73–74 Cell proliferation, 299–300
phenomenological law, 407–408 simulation results, 70f Cellular differentiation, 288
preprocessing, 406 structural model, 74 Cellular senescence, articular cartilage,
remodeling points, 407 uniaxial mechanical test, 66 366–367
trabecular bone representative volume Carotid hemodynamics CFD studies. See Computational fluid
element (see Homogenization inflow and outflow conditions, 84 dynamics (CFD) studies
technique, trabecular bone RVE) structural modeling, 86 Chemoattraction, 288
Wolff’s law, 201–202 Carotid inflow, 82 Chemotactic motility matrix, 320
Buckling analysis, 188 Carreau-Yasuda model, 85 Chemotaxis, 288, 295
Buckling resistance, stents, 36f,37 Carter’s model, 201–202 Chitinase 3-like-1 (CHI3L1), 364
Cartilage stem/progenitor cells (CSPCs), 369 Chitosan (CHT), 373
C Cartilage tissue, 182 Chondrocytes
Cadherins, 380–381 avascular nature, 361–362 cartilage repair issues, 369
Calcaneal bone harvest cartilage cells, 362–363 cell shape, 383
Achilles tendon traction, 243 extracellular matrix turnover, 366 cytoplasm, 362
heel fracture, 241 hyaline cartilage extracellular matrix, 363–365 density, 363
incisional symptoms, 241 matrices, 362 differentiation, 362f
mechanical properties, 242 osteoarthritis, 367–368 fluid flow, 386
peripheral cortical layer, 247–248 perichondrium, 361–362 hydrostatic pressure, 385
sequential elimination, 243 synovial joints, 365–366 mechanotransduction, 386–387
talus and Achilles tendon load Cartilage tissue engineering mitosis, 362
cortical thickness, 247–248 articular cartilage (see Articular cartilage) morphological changes, 383
displacements, 243t, 246t mesenchymal stem cells nasal septal cartilage, 369
maximum principal stress, 243, 244f, 246, (see Chondrogenesis, mesenchymal shear stress, 386
247f stem cells) stiffness, 381
minimum principal stress, 245–246, 245f, Cell adhesion, 253 Chondrogenesis, mesenchymal stem cells
248f Cell-cell attraction, 288–289 computational modeling, 387–388
tricortical bone grafts, 241 Cell death, 330 external mechanical signals
Calcified zone, articular cartilage, 365–366 Cell deformation, 293f calcium signaling cascades, 386–387
Calcium signaling, 386–387 Cell displacement, 298 compression, 385–386
Cancer Cell internal deformation, 298–299 fluid flow, 386
astrocytoma, 314 Cell-laden hydrogel, 272 fluid shear stresses, 387
glioblastoma (see Glioblastoma (GBM)) Cell migration shear stress, 386
incidence, 313 cell-cell attraction, 288–289 extracellular cues
microenvironments, 313 cell differentiation, 290 cell shape and dynamic morphological
2D cultures, 314 cell extension and retraction, 297f changes, 383
Cardiac mechanics cell proliferation, 299–300 intracellularmechanotransduction,384–385
active stress, 142–144 cell shape change and remodeling, 298 stiffness, 381–382
computational calculations, 139 cellular differentiation, 288 substrate topography, 383–384, 384f
linear finite element method, 139–140 chemotaxis, 288, 295 in vitro systems, 387–388