Page 414 - Advances in Biomechanics and Tissue Regeneration
P. 414
412 21. NUMERICAL ASSESSMENT OF BONE TISSUE REMODELING
[9] J. Belinha, R.M.N. Jorge, L.M.J.S. Dinis, Bone tissue remodelling analysis considering a radial point interpolator meshless method, Eng. Anal.
Bound. Elem. 36 (11) (2012) 1660–1670, https://doi.org/10.1016/j.enganabound.2012.05.009.
[10] J. Belinha, L.M.J.S. Dinis, R.M.N. Jorge, The bone tissue remodelling analysis in dentistry using a meshless method, in: Proceedings of the III
International Conference on Biodental Engineering, 2014, pp:213 220:
[11] D.R. Carter, D.P. Fyhrie, R.T. Whalen, Trabecular bone density and loading history: regulation of connective tissue biology by mechanical
energy, J. Biomech. 20 (8) (1987) 785–794, https://doi.org/10.1016/0021-9290(87)90058-3.
[12] R.T. Whalen, D.R. Carter, C.R. Steele, Influence of physical activity on the regulation of bone density, J. Biomech. 21 (10) (1988) 825–837,
https://doi.org/10.1016/0021-9290(88)90015-2.
[13] D.R. Carter, T.E. Orr, D.P. Fyhrie, Relationships between loading history and femoral cancellous bone architecture, J. Biomech. 22 (3) (1989)
231–244, https://doi.org/10.1016/0021-9290(89)90091-2.
[14] K.-J. Bathe, Finite Element Procedures, Prentice Hall, Pearson Education, Inc., New Jersey, 1996.
[15] J.C. Lotz, T.N. Gerhart, W.C. Hayes, Mechanical properties of metaphyseal bone in the proximal femur, J. Biomech. 24 (5) (1991) 317–329,
https://doi.org/10.1016/0021-9290(91)90350-V.
[16] P. Zioupos, R.B. Cook, J.R. Hutchinson, Some basic relationships between density values in cancellous and cortical bone, J. Biomech. 41 (9) (2008)
1961–1968, https://doi.org/10.1016/j.jbiomech.2008.03.025.
[17] G.S. Beaupr e, T.E. Orr, D.R. Carter, An approach for time-dependent bone modeling and remodeling-application: a preliminary remodeling
simulation, J. Orthop. Res. 8 (5) (1990) 662–670, https://doi.org/10.1002/jor.1100080507.
[18] G.S. Beaupr e, T.E. Orr, D.R. Carter, An approach for time-dependent bone modeling and remodeling. Theoretical development, J. Orthop. Res.
8 (5) (1990) 651–661, https://doi.org/10.1002/jor.1100080506.
[19] G. Bergmann, et al., Hip contact forces and gait patterns from routine activities, J. Biomech. 34 (7) (2001) 859–871, https://doi.org/10.1016/
S0021-9290(01)00040-9.
[20] J.H. Keyak, T.S. Kaneko, J. Tehranzadeh, H.B. Skinner, Predicting proximal femoral strength using structural engineering models, Clin. Orthop.
Relat. Res. (437) (2005) 219–228, https://doi.org/10.1097/01.blo.0000164400.37905.22.
II. MECHANOBIOLOGY AND TISSUE REGENERATION