Page 418 - Advances in Biomechanics and Tissue Regeneration
P. 418
416 Index
Extracellular matrix (ECM) (Continued) Four-element Windkessel (WK) model, 144 negative log-likelihood function, 162
initial cell radius, 300 Freeze-drying approach, 271 superimposed template mesh and registered
multisignaling, 300–304 Frobenius norm, 327 data mesh, 162, 164f
Extrusion-based bioprinting, 270–271, 271t FSI model. See Fluid-structure interaction template mesh, 162, 163f
Eye anatomy, 4–5 (FSI) model Heaviside function, 319
Eyeball, numerical model, 7f Fugitive bioink, 270–271 Heel fracture, 241
Eye dimensions, 4–5 Hexahedral mesh, 47
G Hierarchical bone classification, 201
F Gait and balance functions, 21 Hill-type muscle models, 184–185
Fabric tensor morphologic-based method Gaussian mixture model (GMM), 161 Hip prosthesis, 405
material orientation, 205 Gauss-Legendre quadrature scheme, 396, 406 Homogenization technique, trabecular bone
mean interception length, 203 GBM. See Glioblastoma (GBM) RVE
orientation-dependent feature, 204, 204f Gelatin, 273 fabric tensor morphologic-based method,
FEM. See Finite element method (FEM) Gelatin methacrylated (GelMA), 273 203–205
Femoral fractures Gianturco stent, 38, 38f micro-CT images, 203
diaphyseal fractures, 215–216 Glioblastoma (GBM) orientation distribution function, 203
intramedullary nails (see Intramedullary histopathological conditions, 314 phenomenological material law method,
nails, femoral fracture) hypoxic environment, 314–315 205–206
location, 215–216, 216f microfluidic systems rotation study, 206, 209f
Winquist and Hansen’s classification, 217f cell viability, 317 scale study, 206, 207–208f
Wiss’ classification, 216f in vitro GBM models (see Microfluidic structural application
Fibroblasts, 98 devices, in vitro GBM models) computational cost, 210, 210f
mechanobiology necrotic core formation, 315, 317f finite element method, 207–208, 209f
compression force, 351 pseudopalisade formation, 315, 316f homogeneous RVE, 207–208, 209f
free-floating/anchorage type I collagen 3D cell culture, 317 natural neighbor radial point
gels, 351–354, 354t, 357f U251-MG human GBM cell line, 317 interpolation method, 207–208, 209f
myofibroblasts, 354–358 survival rate, 314 trabecular bone representative volume
tension loading, 355–356t Glycoproteins, 364 element, 203
morphology, chondrocyte phenotype loss, Glycosaminoglycans (GAGs), 97, 344–345, Human blood vessels hemodynamics
383 363–364 aortic hemodynamics, 84–86
Fibronectin, 364 Goldman-Hodgkin-Katz equation, 121 finite element modeling
Fibrous layer, eye, 4–5 Goldmann applanation tonometry, 7 aortic and carotid hemodynamics, 84
Finite element method (FEM), 116, 181 Golgi apparatus, 362 aortic structural modeling, 85–86
bone remodeling after total hip arthroplasty, Go or grow paradigm, 329 arterial compliance, 90–91, 90f
410, 410f Graphics processing units (GPUs), 115–116, arterial hemodynamics, 87
cardiac modeling 139–140 blood flow modeling, 85
displacement field solution, 154f Green strain tensor, 142 boundary conditions dilemma, 82–84
end-diastole, end-IVC, end-ejection, and Gruen zones, 410, 411f boundary conditions, solid domain, 85
end-IVR time spans, 155f carotid structural modeling, 86
linear finite element method, 139–140 H computational grid generation, 81–82
pressure-volume loop, 154f Heart electrophysiology fluid-structure interaction problem,
strain field proper orthogonal modes, 154f action potential (see Action potential models) 86–87
colonic stent simulation, 49–51 adaptive time integration schemes, 115 image-based geometrical reconstruction,
corneal surface, 7 arrhythmias, 116 80–81, 81f
femoral fracture (see Intramedullary nails, bidomain model, 115, 117–118 instantaneous wall shear stress
femoral fracture) ectopic stimulation, 130, 131f comparison, 87–89
human blood vessels (see Human blood graphics processing units, 115–116 limitation, 91
vessels hemodynamics) high-performance computing platforms, time average wall shear stress, 85
mandibular bone remodeling, dental 115–116 Human dental pulp stem cells (hDPSCs),
implant intramural reentry, 116 371
nodal distribution, 396 ischemia, 116 Human umbilical cord Wharton’s
trabecular structure, 399–401f monodomain model, 115, 118–119 jelly–derived mesenchymal stem cells
vs. meshless methods, 202 myocardium conductance, 119 (hWJ-MSCs), 371
semicircular ducts, 3D-model, 29, 30f numerical solution Hyaline cartilage, 362
trabecular bone RVE, structural mass matrix integration, 125–126 extracellular matrix, 363–365
application, 207–208, 209f spatial-temporal discretization, 124–125 collagens, 363
vestibular system, 24 splitting technique operators, 124 glycoproteins, 364
Fixed partial dentures, 393 reentrant patterns, 131–132, 132–133f interterritorial matrix, 365
Fluid shear stresses (FSS), 387 transmembrane potential, 131–132, 132f pericellular matrix (PCM), 364–365
Fluid-structure interaction (FSI) model, 80, Heart template standardization proteoglycan monomers, 363–364
86–88. See also Human blood vessels deformed data mesh, 162, 163f territorial matrix, 365
hemodynamics Gaussian mixture model, 161–162 matrix production, 383–384
Flux vector, 320 Gram matrix, 162 Hybrid cellular Potts model, 289–290
Focal adhesions (FA), 380 idealized left ventricle, 162, 163f Hydrogels
Force equilibrium, cell migration, 297 matrix of posterior probabilities, 162 natural, 272–273
Forward Euler method, 327 morphing process, 161 synthetic, 273–274