Page 418 - Advances in Biomechanics and Tissue Regeneration
P. 418

416                                               Index

           Extracellular matrix (ECM) (Continued)  Four-element Windkessel (WK) model, 144  negative log-likelihood function, 162
             initial cell radius, 300         Freeze-drying approach, 271         superimposed template mesh and registered
             multisignaling, 300–304          Frobenius norm, 327                     data mesh, 162, 164f
           Extrusion-based bioprinting, 270–271, 271t  FSI model. See Fluid-structure interaction  template mesh, 162, 163f
           Eye anatomy, 4–5                        (FSI) model                   Heaviside function, 319
           Eyeball, numerical model, 7f       Fugitive bioink, 270–271           Heel fracture, 241
           Eye dimensions, 4–5                                                   Hexahedral mesh, 47
                                              G                                  Hierarchical bone classification, 201
           F                                  Gait and balance functions, 21     Hill-type muscle models, 184–185
           Fabric tensor morphologic-based method  Gaussian mixture model (GMM), 161  Hip prosthesis, 405
             material orientation, 205        Gauss-Legendre quadrature scheme, 396, 406  Homogenization technique, trabecular bone
             mean interception length, 203    GBM. See Glioblastoma (GBM)             RVE
             orientation-dependent feature, 204, 204f  Gelatin, 273               fabric tensor morphologic-based method,
           FEM. See Finite element method (FEM)  Gelatin methacrylated (GelMA), 273   203–205
           Femoral fractures                  Gianturco stent, 38, 38f            micro-CT images, 203
             diaphyseal fractures, 215–216    Glioblastoma (GBM)                  orientation distribution function, 203
             intramedullary nails (see Intramedullary  histopathological conditions, 314  phenomenological material law method,
                nails, femoral fracture)        hypoxic environment, 314–315          205–206
             location, 215–216, 216f            microfluidic systems              rotation study, 206, 209f
             Winquist and Hansen’s classification, 217f  cell viability, 317      scale study, 206, 207–208f
             Wiss’ classification, 216f          in vitro GBM models (see Microfluidic  structural application
           Fibroblasts, 98                         devices, in vitro GBM models)    computational cost, 210, 210f
             mechanobiology                      necrotic core formation, 315, 317f  finite element method, 207–208, 209f
               compression force, 351            pseudopalisade formation, 315, 316f  homogeneous RVE, 207–208, 209f
               free-floating/anchorage type I collagen  3D cell culture, 317        natural neighbor radial point
                gels, 351–354, 354t, 357f        U251-MG human GBM cell line, 317     interpolation method, 207–208, 209f
               myofibroblasts, 354–358          survival rate, 314                trabecular bone representative volume
               tension loading, 355–356t      Glycoproteins, 364                      element, 203
             morphology, chondrocyte phenotype loss,  Glycosaminoglycans (GAGs), 97, 344–345,  Human blood vessels hemodynamics
                383                                363–364                        aortic hemodynamics, 84–86
           Fibronectin, 364                   Goldman-Hodgkin-Katz equation, 121  finite element modeling
           Fibrous layer, eye, 4–5            Goldmann applanation tonometry, 7     aortic and carotid hemodynamics, 84
           Finite element method (FEM), 116, 181  Golgi apparatus, 362              aortic structural modeling, 85–86
             bone remodeling after total hip arthroplasty,  Go or grow paradigm, 329  arterial compliance, 90–91, 90f
                410, 410f                     Graphics processing units (GPUs), 115–116,  arterial hemodynamics, 87
             cardiac modeling                      139–140                          blood flow modeling, 85
               displacement field solution, 154f  Green strain tensor, 142          boundary conditions dilemma, 82–84
               end-diastole, end-IVC, end-ejection, and  Gruen zones, 410, 411f     boundary conditions, solid domain, 85
                end-IVR time spans, 155f                                            carotid structural modeling, 86
               linear finite element method, 139–140  H                             computational grid generation, 81–82
               pressure-volume loop, 154f     Heart electrophysiology               fluid-structure interaction problem,
               strain field proper orthogonal modes, 154f  action potential (see Action potential models)  86–87
             colonic stent simulation, 49–51    adaptive time integration schemes, 115  image-based geometrical reconstruction,
             corneal surface, 7                 arrhythmias, 116                      80–81, 81f
             femoral fracture (see Intramedullary nails,  bidomain model, 115, 117–118  instantaneous wall shear stress
                femoral fracture)               ectopic stimulation, 130, 131f        comparison, 87–89
             human blood vessels (see Human blood  graphics processing units, 115–116  limitation, 91
                vessels hemodynamics)           high-performance computing platforms,  time average wall shear stress, 85
             mandibular bone remodeling, dental    115–116                       Human dental pulp stem cells (hDPSCs),
                implant                         intramural reentry, 116               371
               nodal distribution, 396          ischemia, 116                    Human umbilical cord Wharton’s
               trabecular structure, 399–401f   monodomain model, 115, 118–119        jelly–derived mesenchymal stem cells
             vs. meshless methods, 202          myocardium conductance, 119           (hWJ-MSCs), 371
             semicircular ducts, 3D-model, 29, 30f  numerical solution           Hyaline cartilage, 362
             trabecular bone RVE, structural     mass matrix integration, 125–126  extracellular matrix, 363–365
                application, 207–208, 209f       spatial-temporal discretization, 124–125  collagens, 363
             vestibular system, 24               splitting technique operators, 124  glycoproteins, 364
           Fixed partial dentures, 393          reentrant patterns, 131–132, 132–133f  interterritorial matrix, 365
           Fluid shear stresses (FSS), 387      transmembrane potential, 131–132, 132f  pericellular matrix (PCM), 364–365
           Fluid-structure interaction (FSI) model, 80,  Heart template standardization  proteoglycan monomers, 363–364
                86–88. See also Human blood vessels  deformed data mesh, 162, 163f  territorial matrix, 365
                hemodynamics                    Gaussian mixture model, 161–162   matrix production, 383–384
           Flux vector, 320                     Gram matrix, 162                 Hybrid cellular Potts model, 289–290
           Focal adhesions (FA), 380            idealized left ventricle, 162, 163f  Hydrogels
           Force equilibrium, cell migration, 297  matrix of posterior probabilities, 162  natural, 272–273
           Forward Euler method, 327            morphing process, 161             synthetic, 273–274
   413   414   415   416   417   418   419   420   421   422   423