Page 421 - Advances in Biomechanics and Tissue Regeneration
P. 421
Index 419
Perimetral adaptability, stents, 36f,37 idealized biventricle example Sherman-Morrison formula, 327
Peripheral blood, 371–372 end-IVC pressure, 152 Silicone bandages, 354–358
Peripheral blood-mesenchymal stem cells left ventricular pressure-volume curves, Silicone implant, 3-D printing
(PB-MSCs), 371 155–157, 156–158f bi-component silicone, 281, 282f
Perturbation analysis, 188 PODI calculation accuracy, 155–157 liquid deposition modeling (LDM), 281
Perturbed heart geometry BV-1, 166, 167f right ventricular pressure-volume curve, medical applications, 275
Phenomenological models (PMs), 63–64, 156–157f, 157 mono-component silicone, 281
67–68, 119–120, 407–408 solution field error, 155–157, 155f ORL implant
average apparent density, 205–206 three-element WK parameters, 152 complications, 279
estimated mechanical constitutive model parametric PODI, 146, 150 contrast tomodensitometry, 276, 278f
parameters, 70t postprocessing and validation, 151 laryngotracheobronchial tract, 275, 275f
Poisson’s coefficient, 206 temporal PODI, 146 larynx stents, 275
shear modulus, 206 time standardization method, 140 stenosis management, 276–279
transverse elastic modulus, 205–206 Proper orthogonal values (POVs), 145 tracheal stents, 275
Photolabile cell-laden methacrylated gelatin Protein-based scaffolds, 372–373 personalized medical implant, 280, 280f
(GelMA) hydrogels, 272 Proteoglycan 4 (PRG4), 379 polydimethylsiloxane, 274, 274f
Piezoelectric effect, 254 Proteoglycans (PGs), 363–364, 380f properties, 274–275
Piola-Kirchhoff stress, 142–144 Protrusion force, 294 rheological testing and parameters
Platelet-rich plasma (PRP), 374 Pseudopalisades, 314 shear thinning effect, 282
®
Pluronic F-127, 273 thixotropy, 283
PMs. See Phenomenological models (PMs) R yield stress character, 282
p-norm threshold model, 319 Radial compression resistance (RCR), 36f,37 UV light technology, 281
PODI method. See Proper orthogonal Radial point interpolation method (RPIM), 24, Single dental implant, 394
decomposition with interpolation 406 Singular value decomposition (SVD), 145–146
(PODI) method bone remodeling after THA, 410, 410f Skin biomechanics
Point-in-polygon (PIP) algorithm, 159 semicircular ducts, 3D-model, 29, 30f anisotropy, 346
Poisson’s ratio, 183, 206, 226t, 242 Radial zone, articular cartilage, 365–366 compression testing, 348
Poly(L-ε-caprolactone) (PCL), 373 Reaction-convection-diffusion phenomena, elasticity, 345
Poly(L-lactic acid) (PLLA), 373 318 glycosaminoglycans, 344–345
Poly(lactic-co-glycolic acid) (PLGA), 373 Reduced order basis (ROB), 140 indentation testing, 348–349, 350f
Poly(vinylidene fluoride) (PVDF), 256–259 Refractive error, 3 inelasticity, 345
Polydimethylsiloxane (PDMS), 274, 274f Registration, heart, 161 nonhomogeneity, 346
Poly ethylene glycol (PEG), 273 Representative volume element (RVE), stiffness, 345
Polymer-based magnetoelectric trabecular bone, 203 strain, 345
composites, 261 Revision arthroplasty, 405 strength, 345
Polysaccharide-based scaffolds, 373 Rigid registration, 161 stress, 345, 345f
Positioning vertigo, 21–22 Robin boundary conditions, 332 suction testing, 349–350
Posterior cruciate ligament (PCL), 182 Roland LPX-250 3D laser scanner, 220f tensile testing, 346–348, 347–348f
Posterior tibial slope (PTS), 186–187 Rough endoplasmic reticulum (rER), 362 viscoelasticity, 345
Postural control system, 21 RPIM. See Radial point interpolation method Young’s modulus, 345
Primary arthroplasty, 405 (RPIM) Skin mechanobiology
Principal stresses, 399f force effect
Proliferation models, 319 S compression forces, 351
Proper generalized decomposition (PGD), Sarcomere stretch effect, 142–144 fibroblasts, 351–354, 354–356t
140 Scaffolds, cartilage tissue engineering keratinocyte, 351, 352–353t
Proper orthogonal decomposition (POD), 140, polysaccharide-based scaffolds, 373 mechanosensing, 350–351
144–146 properties, 372 mechanotransduction, 350–351
Proper orthogonal decomposition with protein-based scaffolds, 372–373 Sliding-filament theory, 102–103
interpolation (PODI) method, 140 synthetic materials, 373 Smoothed-particle hydrodynamics (SPH),
cardiac modeling, 141 Sclera, 7 24–25
database construction, 150 Self-expanding stents Smooth muscle cell (SMC) biomechanics
displacement vectors, 146 nitinol stents, 38–40 alterations, 95
fixed mesh configuration, 141 stainless steel, 37–38 aortic wall remodeling, 109
full heartbeat modeling, 140 Semicircular canals (SCCs), 22 in ascending thoracic aortic aneurysms,
human left ventricle example Semicircular ducts (SCDs), 3D-model, 22 107–110
active contraction parameters, 151, 151t angular velocity functions, 26, 26f cellular and subcellular architecture, 101f
Dirichlet boundary condition, 151 circular model, 25, 25f contraction
displacement field solution, 154f cupula, 27–28, 28f actin filaments, 101
end-diastole, end-IVC, end-ejection, and dimensions, 25–26 alpha smooth muscle actin, 101
end-IVR time spans, 155f finite element method, 29, 30f angiotensin II (Ang II) signaling
material constant values, 151, 151t fluid velocity, 26, 27f pathway, 102
Neumann boundary condition, 151 particle discretization meshes, 25–26 (sub)cellular models, 105
PODI computational speed, 151–152 RPIM and NNPRIM approaches, 29, 30f cross-bridges, 102–103
pressure-volume loop, 152, 154f Shape factor, 294–295 function, 95
strain proper orthogonal modes, 153f Shear modulus, 206 membrane depolarization, 102
strain proper orthogonal values, 152f Shear thinning effect, 282 signaling pathways, 101, 102f