Page 335 - Air Pollution Control Engineering
P. 335

06_chap_wang.qxd  05/05/2004  4:10 pm  Page 314
                    314                                                    Lawrence K. Wang et al.

                    Table 2
                    Design Equations for Condensing Systems

                                    H     = HAP   [∆H + C     (T – T  )]
                                     con        con       p HAP  e  con
                                    H     = HAP    C     (T – T  )
                                     uncon      o,m  p HAP  e  con
                                    H     = [(Q /392) – HAP  ] C  (T – T  )
                                     noncon    e          e,m  p air  e  con
                                    HAP   = HAP    – HAP
                                        con     e,m     o,m
                                                                −6
                                    HAP   = (Q /392)[1 − (HAP x 10 )][P  /(P – P  )]
                                        o,m   e             e        vapor  e  vapor
                                    HAP   = (Q /392)HAP × 10 -6
                                        e,m   e        e
                       Note: C p HAP  = average specific heat of compound (Btu/lb-mol ºF)
                           HAP     = entering concentration of HAP (ppmv)
                               e
                           HAP     = molar flow of HAP inlet (lb-mol/min)
                               e,m
                           HAP     = molar flow of HAP outlet (lb-mol/min)
                               o,m
                           ∆H      = heat of evaporation (Btu/lb-mol)
                           P       = system pressure (mm Hg)
                            e
                           P       = P
                            vapor    partial
                           Q       = maximum flow rate (scfm at 77ºF and 1 atm)
                             e
                           T       = condensing temperature (ºF)
                            con
                           T       = entering emission stream temperature (ºF)
                            e
                       Source: US EPA (1991).
                        where  C p HAP  is the average specific heat of the HAP for the temperature interval T con −T e
                        (Btu/lb-mol ºF). (See the Appendix.)
                    2c. Calculate the enthalpy change associated with the noncondensible vapors (i.e., air) (basis:
                        1 min):

                                      H noncon  =  Q ( [  e  392 ) −  HAP e m]  C    p ( T − T )  (6)
                                                                            con
                                                                        e
                                                               ,
                                                                    air
                        where  C p air  is the average specific heat of air for the temperature interval T con −T (Btu/lb-
                                                                                         e
                        mol ºF). (See the Appendix.)
                    3a. Calculate the condenser heat load (Btu/h) by combining Eqs. (5) and (6):
                                            H load  = 11  × 60  H (  con  +  H noncon )        (7)
                                                    .
                        where H    is the condenser heat load (Btu/h), H  is the enthalpy of condensed HAP,
                               load                              con
                        and H     is the enthalpy of the noncondensible vapors. The factor 1.1 is included as a
                             noncon
                        safety factor.
                       Table 2 summarizes design equations for condensing systems.
                    3.4. Condenser Size
                       Condenser systems are typically sized based on the total heat load and the overall
                    heat transfer coefficients of the gas stream and the coolant. An accurate estimate of
                    individual coefficients can be made using physical/chemical property data for the gas
   330   331   332   333   334   335   336   337   338   339   340