Page 170 - Air and gas Drilling Field Guide 3rd Edition
P. 170

6.5 Air and Gas Drilling Model    161




              where
                                            8                            9
                                                                       32
                              2           3               2
                                                             P g  T av
                                            >                            >
                                            >                            >
                                                                     Q g
                                            >                            >
                                            <                            =
                              6     _ w t  7         f    6  P   T g   7
                              6           7               6            7  :
                       B a ðPÞ¼              1 þ
                              4           5               4     2   2  5
                                P g  T av   >   2gðD h   D p Þ  p        >
                                                                    p
                                                                h
                                            >                 ðD   D Þ   >
                                            >                4           >
                                 P   T g  Q g :                          ;
              Using Equations (6-6), (6-7), and (6-13), Equation (6-53) can be rearranged to
              give
                                     ð                  ð H
                                      P bh
                                            PdP      a a
                                                   ¼      dh;                  (6-54)
                                          2      2
                                        ðP þ b a T Þ  T av
                                      P at      av       0
              where

                                      S g      _ w s
                                a a ¼     1 þ                                  (6-55)
                                               _ w g
                                      R e
                                                    2      2
                                         f                _ w g
                                b a ¼           R e              :             (6-56)
                                                     p 2

                                    2g ðD h   D p Þ  S g  2    2 2
                                                        ðD   D Þ
                                                          h
                                                               p
                                                     4
              In the form just given, both sides of Equation (6-54) can be integrated. Using the
              constants in Equations (6-55) and (6-56), the solution to Equation (6-54) is
                                                    P
                                                    bh
                                     1    2            a a  H
                                       lnðP þ b a T Þ  ¼  jhj :                (6-57)
                                                2
                                      2         av     T av  0
                                                   P at
              Evaluating Equation (6-57) at the limits and rearranging the results give
                                           2     2
                                         P  þ b a T   2a a
                                       ln  bh    av  ¼   H:                    (6-58)
                                           2
                                         P þ b a T  2  T av
                                           at    av
              Raising both sides of Equation (6-58) to the natural exponent e gives
                                                    2a a H
                                                2
                                        P 2 bh  þ b a T av  ¼ e  T av :        (6-59)
                                         2
                                        P þ b a T 2
                                         at     av
              Equation (6-59) can be rearranged and a solution obtained for P bh . This is
                                      2                      3 0:5
                                                  2a a H
                                               2
                                         2
                                 P bh ¼ðP þ b a T Þe  T av   b a T 5 :         (6-60)
                                                            2 7
                                      6
                                                            av
                                         at
                                               av
                                      4
              The von Karman empirical correlation for wholly turbulent flow conditions can
              be used to determine the friction factor in Equation (6-56)[1]. This empirical
              expression is
                                       2                   3 2
                                                 1
                                       6                   7
                                    f ¼  6                 7  :                (6-61)
                                              D h   D p
                                       4                   5
                                         2 log        þ 1:14
                                                 e
   165   166   167   168   169   170   171   172   173   174   175