Page 256 - Applied Numerical Methods Using MATLAB
P. 256

PROBLEMS   245


                                       f 1 − 2f 0 + f −1  −f 2 + 16f 1 − 30f 0 + 16f −1 − f −2
                 Second Derivatives  h
                                           h 2                12h 2
                   3     (2)
                 (x − 2x) | x=1   0.1   2.6654e-14
                 = 6.0000000000
                                  0.01                      2.9470e-12
                      (2)
                 (sin x) | x=π/3  0.1                       9.6139e-07
                 =−0.8660254037
                                  0.01  7.2169e-06
                   x (2)
                 (e ) | x=0       0.1   8.3361e-04
                 = 1.0000000000
                                  0.01                      1.1183e-10


             5.2 Numerical Differentiation of a Function Given as a Set of Data Pairs
                Consider the three (numerical) functions each given as a set of five data
                pairs in Table P5.2.

                Table P5.2 Three Functions Each Given as a Set of Five Data Pairs
                   x         f 1 (x)      x        f 2 (x)      x        f 3 (x)
                 0.8000    −1.0880      0.8472    0.7494     −0.2000     1.2214
                 0.9000    −1.0710      0.9472    0.8118     −0.1000     1.1052
                 1.0000    −1.0000      1.0472    0.8660      0          1.0000
                 1.1000    −0.8690      1.1472    0.9116      0.1000     0.9048
                 1.2000    −0.6720      1.2472    0.9481      0.2000     0.8187

                (a) Use the formulas (5.1.8) and (5.1.9) to find the first derivatives of the
                    three numerical functions (at x = 1, 1.0472 and 0, respectively) and fill
                    in the following table with the results. Also use the formulas (5.3.1)
                    and (5.3.2) to find the second derivatives of the three functions (at
                    x = 1, 1.0472 and 0, respectively) and fill in the following table with
                    the results.


                                              f (x)| x=1  f (x)| x=1.0472  f (x)| x=0
                                               1
                                                                      3
                                                         2
                    First derivative by Eq. (5.1.8)  1.0000e-02      2.0000e-03
                    First derivative by Eq. (5.1.9)     2.5000e-04
                                                (2)      (2)          (2)
                                              f  (x)| x=1 f  (x)| x=1.0472 f
                                               1         2            3  (x)| x=0
                    Second derivative by Eq. (5.3.1)    6.0254e-03
                    Second derivative by Eq. (5.3.2) 2.4869e-14      8.3333e-04
   251   252   253   254   255   256   257   258   259   260   261