Page 252 - Applied Numerical Methods Using MATLAB
P. 252

DOUBLE INTEGRAL  241
              The N grid point t i ’s and the corresponding weight w N,i ’s are


                       iπ                  π     2   iπ
             t i = cos       ,    w N,i =      sin           for i = 1, 2,...,N
                      N + 1              N + 1      N + 1
                                                                        (5.9.26)

            5.10  DOUBLE INTEGRAL

            In this section, we consider the numerical integration of a function f (x, y) with
            respect to two variables x and y over the integration region R ={(x, y)|a ≤ x ≤
            b, c(x) ≤ y ≤ d(x)} as depicted in Fig. 5.5.

                                             b      d(x)
                    I =    f (x, y) dx dy =        f (x, y)dy dx        (5.10.1)
                          R                a   c(x)
            The numerical formula for this double integration over a two-dimensional region
            takes the form
                                             M     N

                          I(a, b, c(x), d(x)) =  w m  v n f(x m ,y m,n )  (5.10.2)
                                            m=1   n=1
            where the weights w m ,v n depend on the method of one-dimensional integration
            we choose.


                     y


                                      d(x)






                        h ,
                 h ,     x1 y2
                  x0 y2
                        h ,                  c(x)
                         x1 y1
                 h ,
                  x0 y1
                                                                        x
                      a  h x1   h x2   h x3                      h xM  b
                      x      x     x                                 x
                       0      1     2                                 M
                              Figure 5.5  A region for a double integral.
   247   248   249   250   251   252   253   254   255   256   257