Page 310 - Applied Numerical Methods Using MATLAB
P. 310

PROBLEMS   299
                                  R  = 100[Ω] C  = 10[mF ]
                                    1
                                              1

                                   +              R  =         C  =
                         v(t) = t [V ]    i (t)    2      i (t)  2
                                           1
                                                          2
                                   −              1[kΩ]        10[mF]

                                  Figure P6.3.3 A two-mesh RC circuit.

                               1     t
                     R 1 i 1 (t) +   i 1 (τ) dτ + R 2 (i 1 (t) − i 2 (t)) = v(t) = t
                              C 1  −∞
                                               1     t
                              R 2 (i 2 (t) − i 1 (t)) +  i 2 (τ) dτ = 0  (P6.3.7a)
                                              C 2
                                                  −∞
                    In order to convert this system of differential equations into a state
                    equation, we differentiate both sides and rearrange them to get

                              di 1 (t)   di 2 (t)  1      dv(t)
                      (R 1 + R 2 )  − R 2     +    i 1 (t) =   = 1
                                dt        dt    C 1        dt
                              di 1 (t)   di 2 (t)  1
                          −R 2      + R 2     +    i 2 (t) = 0         (P6.3.7b)
                                dt        dt    C 2

                                 R 1 + R 2  −R 2  i (t)    1 − i 1 (t)/C 1
                                                  1    =               (P6.3.7c)

                                   −R 2    R 2   i (t)      −i 2 (t)/C 2
                                                  2
                                            −1
                   i (t)     R 1 + R 2  −R 2   1 − i 1 (t)/C 1
                    1    =                                  with G i = 1/R i

                   i (t)      −R 2    R 2       −i 2 (t)/C 2
                    2

                        −G 1 /C 1   −G 1 /C 2     i 1 (t)  G 1
                    =                                   +       u s (t)
                        −G 1 /C 1  −(G 1 + G 2 )/C 2  i 2 (t)  G 1
                                                                       (P6.3.7d)
                    where u s (t) denotes the unit step function whose value is 1 (one) ∀
                    t ≥ 0.
                     (i) After constructing an M-file function “df6p03g.m” which defines
                        Eq. (P6.3.7d) with R 1 = 100[ ], C 1 = 10[µF], R 2 = 1[k ], C 2 =
                        10[µF], use the MATLAB built-in routines “ode45()”and
                        “ode23s()” to solve the state equation with the zero initial con-
                        dition i 1 (0) = i 2 (0) = 0 and plot the numerical solution i 2 (t) for
                        0 ≤ t ≤ 0.05 s. For possible change of parameters, you may declare
                        R 1 , C 1 , R 2 , C 2 as global variables both in the function and in the
                        main program named, say, “nm6p03g.m”. Do you see any symptom
                        of stiffness from the results?
   305   306   307   308   309   310   311   312   313   314   315