Page 313 - Applied Numerical Methods Using MATLAB
P. 313

302    ORDINARY DIFFERENTIAL EQUATIONS

                 function spring(n,p1,p2,w,color)
                 %draw a spring of n windings, width w from p1 to p2
                 if nargin < 5, color = ’k’; end
                 c = (p2(1) - p1(1))/2; d = (p2(2) - p1(2))/2;
                 f = (p2(1) + p1(1))/2; g = (p2(2) + p1(2))/2;
                 y = -1:0.01:1;  t = (y+1)*pi*(n + 0.5);
                 x = -0.5*w*sin(t); y = y+0.15*(1 - cos(t));
                 a = y(1); b=y(length(x));
                 y = 2*(y - a)/(b - a)-1;
                 yyS = d*y - c*x + g;  xxS = x+f;  xxS1 = [f  f];
                 yyS1 = yyS(length(yyS))+[0 w]; yyS2 = yyS(1)-[0 w];
                 plot(xxS,yyS,color, xxS1,yyS1,color, xxS1,yyS2,color)
                 function damper(xm,y1,y2,w,color)
                 %draws a damper in (xm-0.5 xm + 0.5 y1 y2)
                 if nargin < 5, color = ’k’; end
                 ym = (y1 + y2)/2;
                 xD1 = xm + w*[0.3*[0  0  -1  1]];  yD1 = [y2 + w  ym  ym  ym];
                 xD2 = xm + w*[0.5*[-1 -1  1  1]];  yD2 = ym + w*[1  -1  -1
                 1];
                 xD3 = xm + [0  0];  yD3 = [y1  ym] - w;
                 plot(xD1,yD1,color, xD2,yD2,color, xD3,yD3,color)
                 function wheel_my(xm,ym,w,color)
                 %draws a wheel of size w at center (xm,ym)
                 if nargin < 5, color = ’k’; end
                 xW1 = xm + w*1.2*[-1  1];  yW1 = ym + w*[2  2];
                 xW2 = xm*[1  1];  yW2 = ym + w*[2  0];
                 plot(xW1,yW1,color, xW2,yW2,color)
                 th = [0:100]/50*pi; plot(xm + j*ym+w*exp(j*th),color)


                                       1.2
                    M     y(t)         1      u(t)

                                       0.8
                                       0.6
                 K      B
                                       0.4
                          u(t)
                                       0.2
                                       0    y(t)

                                      −0.2
                                         0      2      4       6      8      10
               (a) The block diagram      (b) The graphs of the input u(t) and the output y(t)
                            Figure P6.4 A mass–spring–damper system.
   308   309   310   311   312   313   314   315   316   317   318