Page 430 - Applied Numerical Methods Using MATLAB
P. 430

HYPERBOLIC PDE  419

              function [u,x,y,t] = wave2(a,D,T,it0,i1t0,bxyt,Mx,My,N)
              %solve a(u_xx + u_yy) = u_tt for D(1) <= x <= D(2), D(3) <= y <= D(4), 0 <= t <= T
              % Initial Condition: u(x,y,0) = it0(x,y), u_t(x,y,0)  = i1t0(x,y)
              % Boundary Condition: u(x,y,t) = bxyt(x,y,t) for (x,y) on Boundary
              % Mx/My=#of subintervals along x/y axis
              %N=#of subintervals along t axis
              dx = (D(2)- D(1))/Mx; x = D(1)+[0:Mx]*dx;
              dy = (D(4)- D(3))/My; y = D(3)+[0:My]’*dy;
              dt = T/N;  t = [0:N]*dt;
              %Initialization
              u = zeros(My+1,Mx + 1);  ut = zeros(My + 1,Mx + 1);
              for j = 2:Mx
               for i = 2:My
                u(i,j) = it0(x(j),y(i));  ut(i,j) = i1t0(x(j),y(i));
               end
              end
              adt2 = a*dt*dt; rx = adt2/(dx*dx); ry = adt2/(dy*dy);
              rxy1 = 1- rx - ry; rxy2 = rxy1*2;
              u_1=u;
              for k = 0:N
               t = k*dt;
               for i = 1:My + 1 %Boundary condition
                u(i,[1 Mx + 1]) = [bxyt(x(1),y(i),t) bxyt(x(Mx + 1),y(i),t)];
               end
               forj=1:Mx+1
                u([1 My + 1],j) = [bxyt(x(j),y(1),t); bxyt(x(j),y(My + 1),t)];
               end
               ifk==0
                for i = 2:My
                  for j = 2:Mx  %Eq.(9.3.13)
                   u(i,j) = 0.5*(rx*(u_1(i,j - 1) + u_1(i,j + 1))...
                      + ry*(u_1(i - 1,j)+u_1(i + 1,j))) + rxy1*u(i,j) + dt*ut(i,j);
                  end
                end
                else
                for i = 2:My
                  for j = 2:Mx  %Eq.(<eqnr>9.3.10)</eqnr>
                   u(i,j) = rx*(u_1(i,j - 1)+ u_1(i,j + 1))...
                     + ry*(u_1(i - 1,j) + u_1(i + 1,j)) + rxy2*u(i,j) -u_2(i,j);
                  end
                end
               end
               u_2 = u_1;  u_1 = u; %update the buffer memory
               mesh(x,y,u), axis([0 2 0 2 -.1 .1]), pause
              end
              %solve_wave2
              it0 = inline(’0.1*sin(pi*x)*sin(pi*y/2)’,’x’,’y’); %(E9.5.3)
              i1t0 = inline(’0’,’x’,’y’);  bxyt = inline(’0’,’x’,’y’,’t’); %(E9.5.2)
              a=.25;D=[020 2];T=2;Mx=40;My=40;N=40;
              [u,x,y,t] = wave2(a,xf,T,it0,i1t0,bxyt,Mx,My,N);




                0.1                            0.1
                 0                              0

               −0.1                            −0.1
                 2                               2
                                            2                              2
                      1                               1             1
                                     1
                           0 0                             0 0
                           (a) At t = 0.1                 (b) At t = 1.8
            Figure 9.6 The solution of a two-dimensional hyperbolic PDE: vibration of a square membrane
            (Example 9.5).
   425   426   427   428   429   430   431   432   433   434   435