Page 430 - Applied Numerical Methods Using MATLAB
P. 430
HYPERBOLIC PDE 419
function [u,x,y,t] = wave2(a,D,T,it0,i1t0,bxyt,Mx,My,N)
%solve a(u_xx + u_yy) = u_tt for D(1) <= x <= D(2), D(3) <= y <= D(4), 0 <= t <= T
% Initial Condition: u(x,y,0) = it0(x,y), u_t(x,y,0) = i1t0(x,y)
% Boundary Condition: u(x,y,t) = bxyt(x,y,t) for (x,y) on Boundary
% Mx/My=#of subintervals along x/y axis
%N=#of subintervals along t axis
dx = (D(2)- D(1))/Mx; x = D(1)+[0:Mx]*dx;
dy = (D(4)- D(3))/My; y = D(3)+[0:My]’*dy;
dt = T/N; t = [0:N]*dt;
%Initialization
u = zeros(My+1,Mx + 1); ut = zeros(My + 1,Mx + 1);
for j = 2:Mx
for i = 2:My
u(i,j) = it0(x(j),y(i)); ut(i,j) = i1t0(x(j),y(i));
end
end
adt2 = a*dt*dt; rx = adt2/(dx*dx); ry = adt2/(dy*dy);
rxy1 = 1- rx - ry; rxy2 = rxy1*2;
u_1=u;
for k = 0:N
t = k*dt;
for i = 1:My + 1 %Boundary condition
u(i,[1 Mx + 1]) = [bxyt(x(1),y(i),t) bxyt(x(Mx + 1),y(i),t)];
end
forj=1:Mx+1
u([1 My + 1],j) = [bxyt(x(j),y(1),t); bxyt(x(j),y(My + 1),t)];
end
ifk==0
for i = 2:My
for j = 2:Mx %Eq.(9.3.13)
u(i,j) = 0.5*(rx*(u_1(i,j - 1) + u_1(i,j + 1))...
+ ry*(u_1(i - 1,j)+u_1(i + 1,j))) + rxy1*u(i,j) + dt*ut(i,j);
end
end
else
for i = 2:My
for j = 2:Mx %Eq.(<eqnr>9.3.10)</eqnr>
u(i,j) = rx*(u_1(i,j - 1)+ u_1(i,j + 1))...
+ ry*(u_1(i - 1,j) + u_1(i + 1,j)) + rxy2*u(i,j) -u_2(i,j);
end
end
end
u_2 = u_1; u_1 = u; %update the buffer memory
mesh(x,y,u), axis([0 2 0 2 -.1 .1]), pause
end
%solve_wave2
it0 = inline(’0.1*sin(pi*x)*sin(pi*y/2)’,’x’,’y’); %(E9.5.3)
i1t0 = inline(’0’,’x’,’y’); bxyt = inline(’0’,’x’,’y’,’t’); %(E9.5.2)
a=.25;D=[020 2];T=2;Mx=40;My=40;N=40;
[u,x,y,t] = wave2(a,xf,T,it0,i1t0,bxyt,Mx,My,N);
0.1 0.1
0 0
−0.1 −0.1
2 2
2 2
1 1 1
1
0 0 0 0
(a) At t = 0.1 (b) At t = 1.8
Figure 9.6 The solution of a two-dimensional hyperbolic PDE: vibration of a square membrane
(Example 9.5).

