Page 425 - Applied Numerical Methods Using MATLAB
P. 425

414    PARTIAL DIFFERENTIAL EQUATIONS



                    100



                     0



                   −100
                      4
                           y                                       x  4
                               2                                3
                                                         2
                                                  1
                                          0  0
           Figure 9.4 A solution for a two dimensional parabolic PDE obtained using ‘‘heat2 ADI()’’
           (Example 9.3).
           Example 9.3. A Parabolic PDE: Two-Dimensional Temperature Diffusion.
              Consider a two-dimensional parabolic PDE

                               2           2
                             ∂ u(x, y, t)  ∂ u(x, y, t)  ∂u(x,y,t)
                          −4
                       10               +             =                 (E9.3.1)
                                 ∂x 2        ∂y 2           ∂t
                            for  0 ≤ x ≤ 4,  0 ≤ y ≤ 4,  0 ≤ t ≤ 5000
           with the initial conditions and boundary conditions
                             u(x, y, 0) = 0  for t = 0                 (E9.3.2a)
                                   x
                          y
               u(x, y, t) = e cos x − e cos y for x = 0,x = 4,y = 0,y = 4  (E9.3.2b)
              We made the following MATLAB program “solve_heat2.m”in order to use
           the routine “heat2_ADI()” to solve this equation and ran this program to get the
           result shown in Fig. 9.4 at the final time.

            %solve_heat2
            clear, clf
            a = 1e-4;
            it0 = inline(’0’,’x’,’y’); %(E9.3.2a)
            bxyt = inline(’exp(y)*cos(x)-exp(x)*cos(y)’,’x’,’y’,’t’); %(E9.3.2b)
            D = [0 4 0 4]; T = 5000; Mx = 40; My = 40;N=50;
            [u,x,y,t] = heat2_ADI(a,D,T,it0,bxyt,Mx,My,N);
            mesh(x,y,u)


           9.3  HYPERBOLIC PDE
           An example of a hyperbolic PDE is a one-dimensional wave equation for the
           amplitude function u(x, t)(x is position, t is time) as
                                 2
                      2
                     ∂ u(x, t)  ∂ u(x, t)
                   A         =            for 0 ≤ x ≤ x f , 0 ≤ t ≤ T    (9.3.1)
                       ∂x 2       ∂t 2
   420   421   422   423   424   425   426   427   428   429   430