Page 261 - Big Data Analytics for Intelligent Healthcare Management
P. 261

COLEC12  SREK1IP1  PION  STMN2  ITM2B  CLST


                        GSTO2                      APBB3                             DCHS2           server
               DHCR24  NRGN                                                    APBA3                 web
                              REG1A  FOLH1  PCSK1N  AATF                APBA2                        STRING

                        EXOC3L2                             APLP1  APLP2        NRXN3                by
                 CALHM1  EIF2AK2    VPS26A  NAE1  TNFRSF21                               DOCK3
         TREM2              PLD3    KCNIP3  SORL1  UBQLN1       TMED10  APBB1  APBA1                 generated


                               ABCA7           MARK1  PSEN2                        NDRG2             is  figure

             SLC30A6  MS4A6A  SERPINA3  CR1  PICALM  CLU  VLDLR MARK4  ADAM10  PSEN1  PRNP  BACE1  BACE2  GRIN3B  This


                               BIN1   DNM1L                   LRP8   GPC1  GRIN2B                    database.
             VSNL1  CD33        SQSTM1      RPS27A     MAPT  CSNK1D  RELN      COL25A1  CAPN2
                               PPP3CA  APOC1  LRRK2  UBB  APOE                   CAPN1      CAST     string


                  C1B1  TOMM40     TF        GSK3A  GSK3B  GFAP  CDK5  MAP2  COK5R1                  the  using


      HSD17B10  CNTNAP2           CTSD             SNCA  ABCA1  CASP4  BCHE         STH              analyzed

                            OGT   CYCS   GAPDH IL6  JUN               DPYSL2    CRHR1                was
                                              UCHL1   MMP3       ACHE                FRMD4A          which
              PITRM1    PRDX2             PTGS2            KLK6             HRH2  DISC1  HTR7
                                  MT3             ACE         GONF  OLR1                             disease,
                           SOD2                       GAB2
                               PTGS1        CCR5                        BPTF
                                     MT-ND1   SNCB  AGER  DKK1  GPR3           ASAH2B  MOBP          Alzheimer’s

                 MSRA
                              MT-ND2                                                                 in
                                      LMNA                                                             [45].
                                                          DKK3                                    10.1  interaction

                                                                                                  FIG.  Gene  software
   256   257   258   259   260   261   262   263   264   265   266