Page 155 - Bio Engineering Approaches to Cancer Diagnosis and Treatment
P. 155

Reference    153




                  [18] D. Pissuwan, S.M. Valenzuela, M.C. Killingsworth, X. Xu, M.B. Cortie, Targeted de-
                     struction of murine macrophage cells with bioconjugated gold nanorods, J. Nanopart.
                     Res. 9 (6) (2007) 1109–1124.
                  [19] D. Pissuwan, S.M. Valenzuela, C.M. Miller, M.B. Cortie, A golden bullet? Selective tar-
                     geting of Toxoplasma gondii tachyzoites using antibody-functionalized gold nanorods,
                     Nano Lett. 7 (12) (2007) 3808–3812.
                  [20] G. Von Maltzahn, J.H. Park, A. Agrawal, N.K. Bandaru, S.K. Das, M.J. Sailor, S.N. Bha-
                     tia, Computationally guided photothermal tumor therapy using long-circulating gold
                     nanorod antennas, Cancer Res. 69 (9) (2009) 3892–3900.
                  [21] K.C. Black, J. Yi, J.G. Rivera, D.C. Zelasko-Leon, P.B. Messersmith, Polydopamine-
                     enabled surface functionalization of gold nanorods for cancer cell-targeted imaging and
                     photothermal therapy, Nanomedicine 8 (1) (2013) 17–28.
                  [22] Y. Akiyama, T. Mori, Y. Katayama, T. Niidome, The effects of PEG grafting level and
                     injection dose on gold nanorod biodistribution in the tumor-bearing mice, J. Control.
                     Release 139 (1) (2009) 81–84.
                  [23] Y.S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, S. Emelianov, En-
                     hanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and
                     image-guided therapy, Optics express 18 (9) (2010) 8867–8878.
                  [24] Y. Qiu, Y. Liu, L. Wang, L. Xu, R. Bai, Y. Ji, et al. Surface chemistry and aspect ratio
                     mediated cellular uptake of Au nanorods, Biomaterials 31 (30) (2010) 7606–7619.
                  [25] J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, et al. Immuno gold nanocages
                     with tailored optical properties for targeted photothermal destruction of cancer cells,
                     Nano Lett. 7 (5) (2007) 1318–1322.
                  [26] L. Au, D. Zheng, F. Zhou, Z.Y. Li, X. Li, Y. Xia, A quantitative study on the photothermal
                     effect of immuno gold nanocages targeted to breast cancer cells, ACS Nano 2 (8) (2008)
                     1645–1652.
                  [27] J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, et al. Gold nanocages as
                     photothermal transducers for cancer treatment, Small 6 (7) (2010) 811–817.
                  [28] S.A. Khan, R. Kanchanapally, Z. Fan, L. Beqa, A.K. Singh, D. Senapati, P.C. Ray, A gold
                     nanocage–CNT hybrid for targeted imaging and photothermal destruction of cancer cells,
                     Chem. Commun. 48 (53) (2012) 6711–6713.
                  [29] B. Khlebtsov, E. Panfilova, V. Khanadeev, O. Bibikova, G. Terentyuk, A. Ivanov, et al.
                     Nanocomposites containing silica-coated gold–silver nanocages and Yb–2, 4-dimethoxy-
                     hematoporphyrin: multifunctional capability of IR-luminescence detection, photosensiti-
                     zation, and photothermolysis, ACS Nano 5 (9) (2011) 7077–7089.
                  [30] L. Gao, J. Fei, J. Zhao, H. Li, Y. Cui, J. Li, Hypocrellin-loaded gold nanocages with
                     high two-photon efficiency for photothermal/photodynamic cancer therapy in vitro, ACS
                     Nano 6 (9) (2012) 8030–8040.
                  [31] S.K. Dondapati, T.K. Sau, C. Hrelescu, T.A. Klar, F.D. Stefani, J. Feldmann, Label-free
                     biosensing based on single gold nanostars as plasmonic transducers, ACS Nano 4 (11)
                     (2010) 6318–6322.
                  [32] H. Yuan, C.G. Khoury, C.M. Wilson, G.A. Grant, A.J. Bennett, T. Vo-Dinh, In vivo par-
                     ticle tracking and photothermal ablation using plasmon-resonant gold nanostars, Nano-
                     med.: Nanotechno. Biol. Med. 8 (8) (2012) 1355–1363.
                  [33] H. Yuan, A.M. Fales, T. Vo-Dinh, TAT peptide-functionalized gold nanostars: enhanced
                     intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance,
                     J. Am. Chem. Soc. 134 (28) (2012) 11358–11361.
   150   151   152   153   154   155   156   157   158   159   160