Page 155 - Bio Engineering Approaches to Cancer Diagnosis and Treatment
P. 155
Reference 153
[18] D. Pissuwan, S.M. Valenzuela, M.C. Killingsworth, X. Xu, M.B. Cortie, Targeted de-
struction of murine macrophage cells with bioconjugated gold nanorods, J. Nanopart.
Res. 9 (6) (2007) 1109–1124.
[19] D. Pissuwan, S.M. Valenzuela, C.M. Miller, M.B. Cortie, A golden bullet? Selective tar-
geting of Toxoplasma gondii tachyzoites using antibody-functionalized gold nanorods,
Nano Lett. 7 (12) (2007) 3808–3812.
[20] G. Von Maltzahn, J.H. Park, A. Agrawal, N.K. Bandaru, S.K. Das, M.J. Sailor, S.N. Bha-
tia, Computationally guided photothermal tumor therapy using long-circulating gold
nanorod antennas, Cancer Res. 69 (9) (2009) 3892–3900.
[21] K.C. Black, J. Yi, J.G. Rivera, D.C. Zelasko-Leon, P.B. Messersmith, Polydopamine-
enabled surface functionalization of gold nanorods for cancer cell-targeted imaging and
photothermal therapy, Nanomedicine 8 (1) (2013) 17–28.
[22] Y. Akiyama, T. Mori, Y. Katayama, T. Niidome, The effects of PEG grafting level and
injection dose on gold nanorod biodistribution in the tumor-bearing mice, J. Control.
Release 139 (1) (2009) 81–84.
[23] Y.S. Chen, W. Frey, S. Kim, K. Homan, P. Kruizinga, K. Sokolov, S. Emelianov, En-
hanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and
image-guided therapy, Optics express 18 (9) (2010) 8867–8878.
[24] Y. Qiu, Y. Liu, L. Wang, L. Xu, R. Bai, Y. Ji, et al. Surface chemistry and aspect ratio
mediated cellular uptake of Au nanorods, Biomaterials 31 (30) (2010) 7606–7619.
[25] J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, et al. Immuno gold nanocages
with tailored optical properties for targeted photothermal destruction of cancer cells,
Nano Lett. 7 (5) (2007) 1318–1322.
[26] L. Au, D. Zheng, F. Zhou, Z.Y. Li, X. Li, Y. Xia, A quantitative study on the photothermal
effect of immuno gold nanocages targeted to breast cancer cells, ACS Nano 2 (8) (2008)
1645–1652.
[27] J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, et al. Gold nanocages as
photothermal transducers for cancer treatment, Small 6 (7) (2010) 811–817.
[28] S.A. Khan, R. Kanchanapally, Z. Fan, L. Beqa, A.K. Singh, D. Senapati, P.C. Ray, A gold
nanocage–CNT hybrid for targeted imaging and photothermal destruction of cancer cells,
Chem. Commun. 48 (53) (2012) 6711–6713.
[29] B. Khlebtsov, E. Panfilova, V. Khanadeev, O. Bibikova, G. Terentyuk, A. Ivanov, et al.
Nanocomposites containing silica-coated gold–silver nanocages and Yb–2, 4-dimethoxy-
hematoporphyrin: multifunctional capability of IR-luminescence detection, photosensiti-
zation, and photothermolysis, ACS Nano 5 (9) (2011) 7077–7089.
[30] L. Gao, J. Fei, J. Zhao, H. Li, Y. Cui, J. Li, Hypocrellin-loaded gold nanocages with
high two-photon efficiency for photothermal/photodynamic cancer therapy in vitro, ACS
Nano 6 (9) (2012) 8030–8040.
[31] S.K. Dondapati, T.K. Sau, C. Hrelescu, T.A. Klar, F.D. Stefani, J. Feldmann, Label-free
biosensing based on single gold nanostars as plasmonic transducers, ACS Nano 4 (11)
(2010) 6318–6322.
[32] H. Yuan, C.G. Khoury, C.M. Wilson, G.A. Grant, A.J. Bennett, T. Vo-Dinh, In vivo par-
ticle tracking and photothermal ablation using plasmon-resonant gold nanostars, Nano-
med.: Nanotechno. Biol. Med. 8 (8) (2012) 1355–1363.
[33] H. Yuan, A.M. Fales, T. Vo-Dinh, TAT peptide-functionalized gold nanostars: enhanced
intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance,
J. Am. Chem. Soc. 134 (28) (2012) 11358–11361.