Page 154 - Bio Engineering Approaches to Cancer Diagnosis and Treatment
P. 154
152 CHAPTER 6 Laser-assisted cancer treatment
Reference
[1] G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Ann.
Phys. 330 (3) (1908) 377–445.
[2] C. Mätzler, MATLAB functions for Mie scattering and absorption, version 2, IAP Res.
Rep. 8 (1) (2002) 9.
[3] C.D. Mobley, Radiative Transfer Modeling for CoBOP, Sequoia Scientific Inc., Redmond
WA WestPark Technical Center, 2001.
[4] B.T. Draine, P.J. Flatau, Discrete-dipole approximation for scattering calculations, JOSA
A 11 (4) (1994) 1491–1499.
[5] J.G. Morelli, O.T. Tan, R. Margolis, Y. Seki, J. Boll, J.M. Carney, et al. Tunable dye laser
(577 nm) treatment of port wine stains, Lasers Surg. Med. 6 (1) (1986) 94–99.
[6] W.R. Chen, R.L. Adams, S. Heaton, D.T. Dickey, K.E. Bartels, R.E. Nordquist, Chromo-
phore-enhanced laser-tumor tissue photothermal interaction using an 808-nm diode laser,
Cancer Lett. 88 (1) (1995) 15–19.
[7] H. Takahashi, T. Niidome, A. Nariai, Y. Niidome, S. Yamada, Gold nanorod-sensi-
tized cell death: microscopic observation of single living cells irradiated by pulsed
near-infrared laser light in the presence of gold nanorods, Chem. Lett. 35 (5) (2006)
500–501.
[8] H. Golzar, F. Yazdian, M. Hashemi, M. Omidi, D. Mohammadrezaei, H. Rashedi, et al.
Optimizing the hybrid nanostructure of functionalized reduced graphene oxide/silver for
highly efficient cancer nanotherapy, New J. Chem. 42 (15) (2018) 13157–13168.
[9] S.J. Oldenburg, R.D. Averitt, S.L. Westcott, N.J. Halas, Nanoengineering of optical reso-
nances, Chem. Phys. Lett. 288 (2–4) (1998) 243–247.
[10] N. Biosciences, Inc. Pilot Study of Aurolase Therapy in Refractory and/or Recurrent
Tumors of the Head and Neck, ClinicalTrials. gov [Internet], National Library of Medi-
cine, Bethesda, MD, USA, 2000.
[11] L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, et al.
Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance
guidance, Proc. Natl. Acad. Sci. 100 (23) (2003) 13549–13554.
[12] C. Loo, A. Lowery, N. Halas, J. West, R. Drezek, Immunotargeted nanoshells for inte-
grated cancer imaging and therapy, Nano Lett. 5 (4) (2005) 709–711.
[13] R. Fekrazad, N. Hakimiha, E. Farokhi, M.J. Rasaee, M.S. Ardestani, K.A. Kalhori, F.
Sheikholeslami, Treatment of oral squamous cell carcinoma using anti-HER2 immunon-
anoshells, Int. J. Nanomed. 6 (2011) 2749.
[14] S.Y. Liu, Z.S. Liang, F. Gao, S.F. Luo, G.Q. Lu, In vitro photothermal study of gold
nanoshells functionalized with small targeting peptides to liver cancer cells, J. Mater.
Sci.: Mater. Med. 21 (2) (2010) 665–674.
[15] M.P. Melancon, W. Lu, M. Zhong, M. Zhou, G. Liang, A.M. Elliott, et al. Targeted mul-
tifunctional gold-based nanoshells for magnetic resonance-guided laser ablation of head
and neck cancer, Biomaterials 32 (30) (2011) 7600–7608.
[16] X. Huang, I.H. El-Sayed, W. Qian, M.A. El-Sayed, Cancer cell imaging and photother-
mal therapy in the near-infrared region by using gold nanorods, J. Am. Chem. Soc. 128
(6) (2006) 2115–2120.
[17] E.B. Dickerson, E.C. Dreaden, X. Huang, I.H. El-Sayed, H. Chu, S. Pushpanketh, et al.
Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squa-
mous cell carcinoma in mice, Cancer Lett. 269 (1) (2008) 57–66.