Page 157 - Bio Engineering Approaches to Cancer Diagnosis and Treatment
P. 157
Reference 155
their apoptosis via recruitment of BH3 interacting-domain death agonist and caspases,
Cell Death Dis. 4 (6) (2013) e697.
[51] A.M. Lima, C. Dal Pizzol, F.B. Monteiro, T.B. Creczynski-Pasa, G.P. Andrade, A.O.
Ribeiro, J.R. Perussi, Hypericin encapsulated in solid lipid nanoparticles: phototox-
icity and photodynamic efficiency, J. Photochem. Photobiol. B: Biol. 125 (2013)
146–154.
[52] S.K. Pushpan, S. Venkatraman, V.G. Anand, J. Sankar, D. Parmeswaran, S. Ganesan, T.K.
Chandrashekar, Porphyrins in photodynamic therapy-a search for ideal photosensitizers,
Curr. Med. Chem.-Anti-Cancer Agents 2 (2) (2002) 187–207.
[53] J. Usuda, H. Kato, T. Okunaka, K. Furukawa, H. Tsutsui, K. Yamada, et al. Photodynamic
therapy (PDT) for lung cancers, J. Thoracic Oncol. 1 (5) (2006) 489–493.
[54] T.J. Dougherty, An update on photodynamic therapy applications, J. Clin. Laser Med.
Surg. 20 (1) (2002) 3–7.
[55] C. Morton, S.B. Brown, S. Collins, S. Ibbotson, H. Jenkinson, H. Kurwa, et al. Guidelines
for topical photodynamic therapy: report of a workshop of the British Photodermatology
Group, Br. J. Dermatol. 146 (4) (2002) 552–567.
[56] J.W. Lee, H.I. Lee, M.N. Kim, B.J. Kim, Y.J. Chun, D. Kim, Topical photodynamic ther-
apy with methyl aminolevulinate may be an alternative therapeutic option for the recalci-
trant Malassezia folliculitis, Int. J. Dermatol. 50 (4) (2011) 488–490.
[57] C.A. Morton, Methyl aminolevulinate: actinic keratoses and Bowen’s disease, Dermatol.
Clinics 25 (1) (2007) 81–87.
[58] M.O. Senge, J.C. Brandt, Temoporfin (Foscan®, 5, 10, 15, 20-tetra (m-hydroxyphenyl)
chlorin)—a second-generation photosensitizer, Photochemistry and photobiology 87 (6)
(2011) 1240–1296.
[59] M. Triesscheijn, M. Ruevekamp, M. Aalders, P. Baas, F.A. Stewart, Outcome of mTHPC
mediated photodynamic therapy is primarily determined by the vascular response, Pho-
tochem. Photobiol. 81 (5) (2005) 1161–1167.
[60] C. Hang, Y. Zou, Y. Zhong, Z. Zhong, F. Meng, NIR and UV-responsive degradable hyal-
uronic acid nanogels for CD44-targeted and remotely triggered intracellular doxorubicin
delivery, Coll. Surf. B: Biointerfaces 158 (2017) 547–555.
[61] A. Raza, U. Hayat, T. Rasheed, M. Bilal, H.M. Iqbal, Smart materials-based near-infra-
red light-responsive drug delivery systems for cancer treatment: a review, J. Mater. Res.
Technol. 8 (1) (2019) 1497–1509.
[62] Y. Zeng, Z. Yang, H. Li, Y. Hao, C. Liu, L. Zhu, et al. Multifunctional nanographene oxide
for targeted gene-mediated thermochemotherapy of drug-resistant tumour, Sci. Rep. 7
(2017) 43506.
[63] F. Bani, M. Adeli, S. Movahedi, M. Sadeghizadeh, Graphene–polyglycerol–curcumin
hybrid as a near-infrared (NIR) laser stimuli-responsive system for chemo-photothermal
cancer therapy, RSC Adv. 6 (66) (2016) 61141–61149.
[64] R.K. Thapa, J.H. Byeon, S.K. Ku, C.S. Yong, J.O. Kim, Easy on-demand self-assembly
of lateral nanodimensional hybrid graphene oxide flakes for near-infrared-induced che-
mothermal therapy, NPG Asia Mater. 9 (8) (2017) e416.
[65] M. Hashemi, M. Omidi, B. Muralidharan, L. Tayebi, M.J. Herpin, M.A. Mohagheghi,
et al. Layer-by-layer assembly of graphene oxide on thermosensitive liposomes for pho-
to-chemotherapy, Acta Biomater. 65 (2018) 376–392.
[66] X. Dong, Z. Sun, X. Wang, X. Leng, An innovative MWCNTs/DOX/TC nanosystem
for chemo-photothermal combination therapy of cancer, Nanomed.: Nanotechnol. Biol.
Med. 13 (7) (2017) 2271–2280.