Page 156 - Bio Engineering Approaches to Cancer Diagnosis and Treatment
P. 156
154 CHAPTER 6 Laser-assisted cancer treatment
[34] H.K. Moon, S.H. Lee, H.C. Choi, In vivo near-infrared mediated tumor destruction by
photothermal effect of carbon nanotubes, ACS Nano 3 (11) (2009) 3707–3713.
[35] J.T. Robinson, G. Hong, Y. Liang, B. Zhang, O.K. Yaghi, H. Dai, In vivo fluorescence im-
aging in the second near-infrared window with long circulating carbon nanotubes capable
of ultrahigh tumor uptake, J. Am. Chem. Soc. 134 (25) (2012) 10664–10669.
[36] A.L. Antaris, J.T. Robinson, O.K. Yaghi, G. Hong, S. Diao, R. Luong, H. Dai, Ultra-low
doses of chirality sorted (6.5) carbon nanotubes for simultaneous tumor imaging and
photothermal therapy, ACS Nano 7 (4) (2013) 3644–3652.
[37] K. Yang, S. Zhang, G. Zhang, X. Sun, S.T. Lee, Z. Liu, Graphene in mice: ultrahigh
in vivo tumor uptake and efficient photothermal therapy, Nano Lett. 10 (9) (2010)
3318–3323.
[38] J.T. Robinson, S.M. Tabakman, Y. Liang, H. Wang, H. Sanchez Casalongue, D. Vinh, H.
Dai, Ultrasmall reduced graphene oxide with high near-infrared absorbance for photo-
thermal therapy, J. Am. Chem. Soc. 133 (17) (2011) 6825–6831.
[39] M. Hashemi, M. Omidi, B. Muralidharan, H. Smyth, M.A. Mohagheghi, J. Mohamma-
di, T.E. Milner, Evaluation of the photothermal properties of a reduced graphene oxide/
arginine nanostructure for near-infrared absorption, ACS Appl. Mater Interfaces 9 (38)
(2017) 32607–32620.
[40] O. Raab, On the effect of fluorescent substances on infusoria, Z. Biol. 39 (1900) 524–526.
[41] N.A. Samy, M.M. Salah, M.F. Ali, A.M. Sadek, Effect of methylene blue-mediated pho-
todynamic therapy for treatment of basal cell carcinoma, Lasers Med. Sci. 30 (1) (2015)
109–115.
[42] A.R. Disanto, J.G. Wagner, Pharmacokinetics of highly ionized drugs II: methylene
blue—absorption, metabolism, and excretion in man and dog after oral administration, J.
Pharmaceut. Sci. 61 (7) (1972) 1086–1090.
[43] A.E. da Hora Machado, Terapia fotodinâmica: princípios, potencial de aplicação e per-
spectivas, Química Nova 23 (2) (2000).
[44] J. Ferreira, P.F.C. Menezes, C.H. Sibata, R.R. Allison, S. Zucoloto, O.C. e Silva, V.S. Ba-
gnato, Can efficiency of the photosensitizer be predicted by its photostability in solution?,
Laser Phys. 19 (9) (2009) 1932–1938.
[45] A. Parihar, A. Dube, P.K. Gupta, Conjugation of chlorin 6 to histamine enhances its cel-
lular uptake and phototoxicity in oral cancer cells, Cancer Chemother. Pharmacol. 68 (2)
(2011) 359–369.
[46] M.M. LoTempio, M.S. Veena, H.L. Steele, B. Ramamurthy, T.S. Ramalingam, A.N.
Cohen, Curcumin suppresses growth of head and neck squamous cell carcinoma, Clin.
Cancer Res. 11 (19) (2005) 6994–7002.
[47] M. Mohan Yallapu, M. Ray Dobberpuhl, D. Michele Maher, M. Jaggi, S. Chand Chau-
han, Design of curcumin loaded cellulose nanoparticles for prostate cancer, Curr. Drug
Metab. 13 (1) (2012) 120–128.
[48] L.A. Muehlmann, B.C. Ma, J.P.F. Longo, M.D.F.M.A. Santos, R.B. Azevedo, Alumi-
num–phthalocyanine chloride associated to poly(methyl vinyl ether-co-maleic anhydride)
nanoparticles as a new third-generation photosensitizer for anticancer photodynamic
therapy, Int. J. Nanomed. 9 (2014) 1199.
[49] B. Kleemann, B. Loos, T.J. Scriba, D. Lang, L.M. Davids, St John’s Wort (Hypericum
perforatum L.) photomedicine: hypericin-photodynamic therapy induces metastatic mel-
anoma cell death, PLoS ONE 9 (7) (2014) e103762.
[50] M. Barathan, V. Mariappan, E.M. Shankar, B.J. Abdullah, K.L. Goh, J. Vadivelu,
Hypericin-photodynamic therapy leads to interleukin-6 secretion by HepG2 cells and