Page 318 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 318
294 13 Key-Study on NHase/AMase System
3. Woodley, J.M. (2008) New opportunities nitrile hydratase and amidase-producing
for biocatalysis: making pharmaceutical microorganisms. Appl. Microbiol. Biotech-
processes greener. Trends Biotechnol., 26 nol., 72, 600–606.
(6), 321–327. 13. Nagasawa, T., Shimizu, H., and
4. Martinkov´ a, L., and Kren, V. (2002) Yamada, H. (1993) The superiority of
Nitrile- and amide-converting microbial the third-generation catalyst Rhodococ-
enzymes: stereo-, regio- and chemo- cus rhodochrous J1 nitrile hydratase for
selectivity. Biocatal. Biotransform., 20, industrial production of acrylamide.
73–93. Appl. Microbiol. Biotechnol., 40, 189–195.
5. Wang, M.-X. (2009) Progress of enan- 14. Shaw, N.M., Robins, K.T., and Kiener,
tioselective nitrile biotransformations in A. (2003) Lonza: 20 years of biotrans-
organic synthesis. Chimia, 63, 331–333. formations. Adv. Synth. Catal., 345 (4),
6. Bauer, R., Knackmuss, H.J., and Stolz, 425–435.
A. (1998) Enantioselective hydration of 15. Prasad, S. and Bhalla, T.C. (2010) Nitrile
2-arylpropionitriles by a nitrile hydratase hydratases (NHases): at the interface of
from Agrobacterium tumefaciens strain
academia and industry. Biotechnol. Adv.,
d3. Appl. Microbiol. Biotechnol., 49,
28, 725–741.
89–95.
16. Asano, Y., Tani, Y., and Yamada, H.
7. Ewert, C., Lutz-Wahl, S., and Fischer, (1980) A new enzyme ‘‘nitrile hydratase’’
L. (2008) Enantioselective conversion which degrades acetonitrile in combina-
of alpha-arylnitriles by Klebsiella oxy- tion with amidase. Agric. Biol. Chem., 44,
toca. Tetrahedron: Asymmetry, 19 (22), 2251–2252.
2573–2578.
17. Cramp, R.A. and Cowan, D.A. (1999)
8. D’Antona, N., Nicolosi, G., Morrone, R.,
Molecular characterization of a novel
Kub´ aˇ c, D., Kaplan, O., and Mart ´ ınkov´ a,
thermophilic nitrile hydratase. Biochim.
L. (2010) Synthesis of novel cyano- Biophys. Acta, 1431, 249–260.
cyclitols and their stereoselective bio- 18. Cantarella, M., Cantarella, L., Gallifuoco,
transformation catalyzed by Rhodococcus A., Frezzini, R., Spera, A., and Alfani,
erythropolis A4. Tetrahedron: Asymmetry, F. (2004) A study in UF-membrane
21, 695–702.
reactor on activity and stability of nitrile
9. Ma, D.-Y., Wang, D.-X., Pan, J., Huang,
hydratase from Microbacterium imperiale
Z.-T., and Wang, M.-X. (2008) Nitrile
CBS 498-74 resting cells for propi-
biotransformations for the synthesis of
onamide production. J. Mol. Catal. B:
enantiomerically enriched b2-, and b3-
Enzym., 29/1–6, 105–113.
hydroxy and -alkoxy acids and amides, a
19. Alfani, F., Cantarella, M., Spera, A., and
dramatic O-substituent effect of the sub-
Viparelli, P. (2001) Operational stability
strates on enantioselectivity. Tetrahedron:
of Brevibacterium imperialis CBS 489-
Asymmetry, 19, 322–329.
74 nitrile hydratase. J. Mol. Catal. B:
10. Dash, R.R., Gaur, A., and
Balomajumder, C. (2009) Cyanide in Enzym., 11 (4–6), 687–697.
industrial wastewaters and its removal: 20. Cantarella, M., Cantarella, L., Spera, A.,
a review on biotreatment. J. Hazard. and Alfani, F. (1998) Acrylamide pro-
Mater., 163, 1–11. duction in an ultrafiltration-membrane
11. Li, T., Liu, J., Bai, R., Ohandja, D.G., bioreactor using cells of Brevibacterium
and Wong, F.S. (2007) Biodegradation imperialis CBS 489-74. J. Membr. Sci.,
of organonitriles by adapted activated 147, 279–290.
sludge consortium with acetonitrile- 21. Cantarella, M., Cantarella, L., Gallifuoco,
degrading microorganisms. Water Res., A., and Spera, A. (2006) Use of a UF-
41, 3465–3473. membrane reactor for controlling selec-
12. Kohyama, E., Yoshimura, A., Aoshima, tively the nitrile hydratase – amidase
D., Yoshida, T., Kawamoto, H., and system in Microbacterium imperiale CBS
Nagasawa, T. (2006) Convenient treat- 498-74 resting cells. Case study: ben-
ment of acetonitrile-containing wastes zonitrile conversion. Enzyme Microb.
using the tandem combination of Technol., 38, 126–134.