Page 413 - Cascade_Biocatalysis_Integrating_Stereoselective_and_Environmentally_Friendly_Reactions
P. 413

References  389

               enormous structural variety of natural sialoconjugates and of designed analogs for
               advanced investigations into their biological profiles.
                Particularly, the development of promiscuous bacterial CSS and SiaT enzymes
               of the Leloir pathway is instrumental for the development of simplified, cascade-
               type synthetic procedures. Structure-guided protein engineering – by using site-
               directed mutagenesis based on structural modeling of substrate binding, analysis
               of the natural genetic diversity, and substrate specificity studies using novel high-
               throughput assay technologies – is a rapid and highly useful strategy for the in
               vitro generation of improved biocatalysts for synthetic applications. The exemplary
               applications listed above illustrate that the construction of new oligosaccharides
               is feasible even with substrate analogs that are structurally very distant from the
               natural functions of these enzymes, which facilitates rapid access to biologically
               important sialylated oligosaccharide structures of high structural variability and of
               amazing complexity.


               Acknowledgments

               This work was supported by the DAAD through a PhD scholarship for D.Y. by
               the Deutsche Forschungsgemeinschaft (Grant SFB 380-B25), and by the ESF via
               COST action CM0701.


               References
                1. Chen, X. and Varki, A. (2010) ACS  Academic Press, London, pp. 847–870.
                  Chem. Biol., 5, 163–176.        (b) Kanipes, M.I. and Guerry, P. (2009)
                2. (a) Varki, A. (1993) Glycobiology, 3,  in Microbial Glycobiology: Structures,
                  97–130. (b) Dwek, R.A. (1996) Chem.  Relevance, and Applications (eds A.P.
                  Rev., 96, 683–720. (c) Schauer, R. (2000)  Moran, O. Holst, P.J. Brennan, and M.
                  Glycoconjugate J., 17, 485–499. (d) Varki,  von Itzstein), Academic Press, London,
                  A. (2007) Nature, 446, 1023–1029.  pp. 871–883.
                3. (a) Rosenberg, S. (1995) Biology of the  8. Inoue, S., Kitajima, K., and Inoue, Y.
                  Sialic Acids, Plenum Press, New York.
                                                  (1996) J. Biol. Chem., 271, 24341–24344.
                  (b) Crocker, P.R., Paulson, J.C., and
                                                9. Unger, F.M. (1981) Adv. Carbohydr.
                  Varki, A. (2007) Nat. Rev. Immunol., 7,
                                                  Chem. Biochem., 38, 323–388.
                  255–266. (c) Schauer, R. (2009) Curr.
                                               10. DeNinno, M.P. (1991) Synthesis, 8,
                  Opin. Struct. Biol., 19, 507–514.
                                                  583–593.
                4. Angata, T. and Varki, A. (2002) Chem.
                  Rev., 102, 439–469.          11. Oehrlein, R. (1999) Top. Curr. Chem.,
                5. Bravo, I.G., Garcia-Vallve, S., Romeu, A.,  200, 227–254.
                                               12. Varki, A. (1992) Glycobiology, 2, 25–40.
                  and Reglero, A. (2004) Trends Microbiol.,
                  12, 120–128.                 13. (a) Kawano, T., Koyama, S., Takematsu,
                6. Vimr, E.R., Kalivoda, K.A., Deszo, E.L.,  H., Kozutsumi, Y., Kawasaki, H.,
                  and Steenbergen, S.M. (2004) Microbiol.  Kawashima, S., Kawasaki, T., and
                  Mol. Biol. Rev., 68, 132–153.   Suzuki, A. (1995) J. Biol. Chem., 270,
                7. (a) Moran, A.P. (2009) in Microbial  16458–16463. (b) Steenbergen, S.M.,
                  Glycobiology: Structures, Relevance, and  Lee, Y.-C., Vann, W.F., Vionnet, J.,
                  Applications (eds A.P. Moran, O. Holst,  Wright, L.F., and Vimr, E.R. (2006) J.
                  P.J. Brennan, and M. von Itzstein),  Bacteriol., 188, 6195–6206.
   408   409   410   411   412   413   414   415   416   417   418