Page 129 - Biodegradable Polyesters
P. 129
References 107
20. Nakamura,C.E.and Whited,G.M. poly(alkylene succinates). Polym. Degrad.
(2003) Metabolic engineering for the Stab., 91, 31–43.
microbial production of 1,3-propanediol. 31. Bikiaris, D.N., Nianias, N.P.,
Curr. Opin. Biotechnol., 14, 454–459. Karagiannidou, E.G., and Docoslis, A.
21. Kaur, G., Srivastava, A.K., and Chand, (2012) Effect of different nanoparticles
S. (2012) Advances in biotechnological on the properties and enzymatic hydrol-
production of 1,3-propanediol. Biochem. ysis mechanism of aliphatic polyesters.
Eng. J., 64, 106–118. Polym. Degrad. Stab., 97, 2077–2089.
22. Kraus, G.A. (2008) Synthetic methods 32. Bikiaris, D.N. (2013) Nanocomposites
for the preparation of 1,3- propanediol. of aliphatic polyesters: an overview of
Clean, 36, 648–651. the effect of different nanoparticles on
23. Zhang, Q. and Xiu, Z. (2009) Metabolic enzymatic hydrolysis and biodegradation
pathway analysis of glycerol metabolism of polyesters. Polym. Degrad. Stab., 98,
in Klebsiella pneumoniae incorporating 1908–1928.
oxygen regulatory system. Biotechnol. 33. Rizzarelli, P., Impallomeni, G., and
Progr., 25, 103–115. Montaudo, G. (2004) Evidence for selec-
24. Zeng, A.P. and Sabra, W. (2011) Micro- tive hydrolysis of aliphatic copolyesters
bial production of diols as platform induced by lipase catalysis. Biomacro-
chemicals: recent progresses. Curr. Opin. molecules, 5, 433–444.
34. Flory, P.J. (1963) Principles of Polymer
Biotechnol., 22, 749–757.
Chemistry, Cornell University Press,
25. Jacquel, N., Freyermouth, F., Fenouillot,
Ithaca, NY.
F., Rousseau, A., Pascault, J.P., Fuertes, P.,
and Saint-Loup, R. (2011) Synthesis and 35. Odian, G. (2004) Principles of Polymer-
ization, 4th edn, John Wiley & Sons,
properties of poly(butylene succinate):
Inc., Hoboken, NJ.
efficiency of different transesterification
36. Chanda, M. (2006) Introduction to
catalysts. J. Polym. Sci., Part A: Polym.
Polymer Science and Chemistry: A Prob-
Chem., 49, 5301–5312.
lem Solving Approach, Second Edition
26. Papageorgiou, G.Z., Achilias, D.S.,
2013,CRC Press and Taylor & Francis
and Bikiaris, D.N. (2009) Crys-
Group, Boca Raton, FL, 33487–2742.
tallization kinetics and melting 37. Kumar, A. and Gupta, R.K. (2003) Fun-
behaviour of the novel biodegradable damentals of Polymer Engineering,2nd
polyesters poly(propylene azelate) and
edn, Marcel Dekker Inc., New York.
Poly(propylene sebacate). Macromol.
38. Kang, C.K., Lee, B.C., and Ihm, D.W.
Chem. Phys., 210, 90–107.
(1996) Modeling of semi-batch direct
27. Papageorgiou, G.Z., Bikiaris, D.N.,
esterification reactor for poly(ethylene
Achilias, D.S., Nanaki, S., and terephthalate) synthesis. J. Appl. Polym.
Karagiannidis, N. (2010) Synthesis Sci., 60, 2007–2015.
and comparative study of biodegradable 39. Kang, C.K., Lee, B.C., Ihm, D.W., and
poly(alkylene sebacate)s. J. Polym. Sci., Tremblay, D.A. (1997) A simulation
Part B: Polym. Phys., 48, 672–686. study on continuous direct esterification
28. Papageorgiou, G.Z. and Bikiaris, D.N. process for poly(ethylene terephtha-
(2005) Crystallization and melt- late) synthesis. J. Appl. Polym. Sci., 63,
ing behavior of three biodegradable 163–174.
poly(alkylene succinates). A comparative 40. Banach, T.E. and Colonna, M. (2001)
study. Polymer, 46, 12081–12092. New catalysts for poly(butylene tereph-
29. Herzog, K., Müller, R.J., and Deckwer, thalate) synthesis. 2. Kinetic comparison
W.D. (2006) Mechanism and kinetics using model compounds. Polymer, 42,
of the enzymatic hydrolysis of polyester 7517–7522.
nanoparticles by lipases. Polym. Degrad. 41. Darda, P.J., Hogendoorn, J.A., Versteeg,
Stab., 91, 2486–2498. G.F., and Souren, F. (2005) Reaction
30. Bikiaris, D.N., Papageorgiou, G.Z., and kinetics of poly(butylenes terephthalate)
Achilias, D.S. (2006) Synthesis and com- polycondensation reaction. AIChE J., 51,
parative biodegradability studies of three 622–630.