Page 129 - Biodegradable Polyesters
P. 129

References  107

               20. Nakamura,C.E.and Whited,G.M.   poly(alkylene succinates). Polym. Degrad.
                  (2003) Metabolic engineering for the  Stab., 91, 31–43.
                  microbial production of 1,3-propanediol.  31. Bikiaris, D.N., Nianias, N.P.,
                  Curr. Opin. Biotechnol., 14, 454–459.  Karagiannidou, E.G., and Docoslis, A.
               21. Kaur, G., Srivastava, A.K., and Chand,  (2012) Effect of different nanoparticles
                  S. (2012) Advances in biotechnological  on the properties and enzymatic hydrol-
                  production of 1,3-propanediol. Biochem.  ysis mechanism of aliphatic polyesters.
                  Eng. J., 64, 106–118.           Polym. Degrad. Stab., 97, 2077–2089.
               22. Kraus, G.A. (2008) Synthetic methods  32. Bikiaris, D.N. (2013) Nanocomposites
                  for the preparation of 1,3- propanediol.  of aliphatic polyesters: an overview of
                  Clean, 36, 648–651.             the effect of different nanoparticles on
               23. Zhang, Q. and Xiu, Z. (2009) Metabolic  enzymatic hydrolysis and biodegradation
                  pathway analysis of glycerol metabolism  of polyesters. Polym. Degrad. Stab., 98,
                  in Klebsiella pneumoniae incorporating  1908–1928.
                  oxygen regulatory system. Biotechnol.  33. Rizzarelli, P., Impallomeni, G., and
                  Progr., 25, 103–115.            Montaudo, G. (2004) Evidence for selec-
               24. Zeng, A.P. and Sabra, W. (2011) Micro-  tive hydrolysis of aliphatic copolyesters
                  bial production of diols as platform  induced by lipase catalysis. Biomacro-
                  chemicals: recent progresses. Curr. Opin.  molecules, 5, 433–444.
                                               34. Flory, P.J. (1963) Principles of Polymer
                  Biotechnol., 22, 749–757.
                                                  Chemistry, Cornell University Press,
               25. Jacquel, N., Freyermouth, F., Fenouillot,
                                                  Ithaca, NY.
                  F., Rousseau, A., Pascault, J.P., Fuertes, P.,
                  and Saint-Loup, R. (2011) Synthesis and  35. Odian, G. (2004) Principles of Polymer-
                                                  ization, 4th edn, John Wiley & Sons,
                  properties of poly(butylene succinate):
                                                  Inc., Hoboken, NJ.
                  efficiency of different transesterification
                                               36. Chanda, M. (2006) Introduction to
                  catalysts. J. Polym. Sci., Part A: Polym.
                                                  Polymer Science and Chemistry: A Prob-
                  Chem., 49, 5301–5312.
                                                  lem Solving Approach, Second Edition
               26. Papageorgiou, G.Z., Achilias, D.S.,
                                                  2013,CRC Press and Taylor & Francis
                  and Bikiaris, D.N. (2009) Crys-
                                                  Group, Boca Raton, FL, 33487–2742.
                  tallization kinetics and melting  37. Kumar, A. and Gupta, R.K. (2003) Fun-
                  behaviour of the novel biodegradable  damentals of Polymer Engineering,2nd
                  polyesters poly(propylene azelate) and
                                                  edn, Marcel Dekker Inc., New York.
                  Poly(propylene sebacate). Macromol.
                                               38. Kang, C.K., Lee, B.C., and Ihm, D.W.
                  Chem. Phys., 210, 90–107.
                                                  (1996) Modeling of semi-batch direct
               27. Papageorgiou, G.Z., Bikiaris, D.N.,
                                                  esterification reactor for poly(ethylene
                  Achilias, D.S., Nanaki, S., and  terephthalate) synthesis. J. Appl. Polym.
                  Karagiannidis, N. (2010) Synthesis  Sci., 60, 2007–2015.
                  and comparative study of biodegradable  39. Kang, C.K., Lee, B.C., Ihm, D.W., and
                  poly(alkylene sebacate)s. J. Polym. Sci.,  Tremblay, D.A. (1997) A simulation
                  Part B: Polym. Phys., 48, 672–686.  study on continuous direct esterification
               28. Papageorgiou, G.Z. and Bikiaris, D.N.  process for poly(ethylene terephtha-
                  (2005) Crystallization and melt-  late) synthesis. J. Appl. Polym. Sci., 63,
                  ing behavior of three biodegradable  163–174.
                  poly(alkylene succinates). A comparative  40. Banach, T.E. and Colonna, M. (2001)
                  study. Polymer, 46, 12081–12092.  New catalysts for poly(butylene tereph-
               29. Herzog, K., Müller, R.J., and Deckwer,  thalate) synthesis. 2. Kinetic comparison
                  W.D. (2006) Mechanism and kinetics  using model compounds. Polymer, 42,
                  of the enzymatic hydrolysis of polyester  7517–7522.
                  nanoparticles by lipases. Polym. Degrad.  41. Darda, P.J., Hogendoorn, J.A., Versteeg,
                  Stab., 91, 2486–2498.           G.F., and Souren, F. (2005) Reaction
               30. Bikiaris, D.N., Papageorgiou, G.Z., and  kinetics of poly(butylenes terephthalate)
                  Achilias, D.S. (2006) Synthesis and com-  polycondensation reaction. AIChE J., 51,
                  parative biodegradability studies of three  622–630.
   124   125   126   127   128   129   130   131   132   133   134