Page 126 - Biofuels for a More Sustainable Future
P. 126

Indicators for sustainability assessment  113


              Sharmina, M., Mc Glade, C., Gilbert, P., Larkina, A., 2017. Global energy scenarios and their
                 implications for future shipped trade. Mar. Policy 84, 12–21.
              Silva, J.A.M., Santos, J.J.C.S., Carvalho, M., Oliveira Junior, S., 2017. On the thermoeco-
                 nomic and LCA methods for waste and fuel allocation in multiproduct systems. Energy
                 127, 775–785.
              Singh, P., Singh, A., 2011. Production of liquid biofuels from renewable resources. Prog.
                 Energy Combust. Sci. 37 (1), 52–68.
              Swanson, R.M., Platon, A., Satrio, J.A., Brown, R.C., 2010. Techno-economic analysis of
                 biomass-to-liquids production based on gasification. Fuel 89 (S1), S11–S19.
              Takeshita, T., Yamaji, K., 2008. Important roles of Fischer–Tropsch synfuels in the global
                 energy future. Energy Policy 36, 2773–2784.
              Tijmensen, M.J.A., Faaij, A.P.C., Hamelinck, C.N., Van Hardeveld, M.R.M., 2002. Explo-
                 ration of the possibilities for production of Fischer Tropsch liquids and power via bio-
                 massgasification. Biomass Bioenergy 23 (2), 129–152.
              V€ais€anen, S., Havukainen, J., Uusital, V.H., M Sukka, R., Luoranen, M., 2016. Carbon foot-
                 print of biobutanol by ABE fermentation from corn and sugarcane. Renew. Energy
                 86, 401–410.
              Vaz, J.R.S., 2011. Biorrefinarias: Cena ´rios e Perspectivas. EMBRAPA Agroenergia, Brası ´lia.
                 176 p.
              Veljkovi c, V.B., Biberdz ˇi c, M.O., Bankovi c-Ili c, I.V., Djalovi c, I.G., Tasi c, M.B.,
                 Njez ˇi c, Z.B., Stamenkovi c, O.S., 2018. Biodiesel production from corn oil: a review.
                 Renew. Sust. Energ. Rev. 91, 531–548.
              Vliet, O.P.R., Van Faaij, A.P.C., Turkenburg, W.C., 2009. Fischer–Tropsch diesel produc-
                 tion in a well-to-wheel perspective: a carbon, energy flow and cost analysis. Energy Con-
                 vers. Manag. 50 (4), 855–876.
              Walter, A., Ensinas, A.V., 2010. Combined production of second-generation biofuels and
                 electricity from sugarcane residues. Energy 35 (2), 874–879.
              Werpy T. and Petersen G., Top Value Added Chemicals From Biomass Volume I – Results
                 of Screening for Potential Candidates From Sugars and Synthesis Gas Top Value Added
                 Chemicals From Biomass, NREL - Technical Report, 76 p. 2004, United States.
              Yanez Angarita, E., et al., 2009. The energy balance in the palm oil-derived methyl ester
                 (PME) life cycle for the cases in Brazil and Colombia. Renew. Energy 34 (12),
                 2905–2913.


              Further reading
              Carvalho, F., 2018. O que esperar do setor florestal em. Blog do MATA NATIVA.
                 Retrieved from: http://www.matanativa.com.br/blog/setor-florestal-em-2018/.
              Murillo-Alvarado, P.E., Ponce-Ortega, J.M., Serna-Gonza ´lez, M., El-Halwagi, M.M.,
                 2013. Optimization of pathways for biorefineries involving the selection of feedstocks,
                 products, and processing steps. Ind. Eng. Chem. Res. 52, 5177–5190.
              Navarro, F.S.P., Vilchis, L.E., Sacramento-Rivero, J.C., 2014. Aplicacio ´n de una nueva
                 metodologı ´a para la evaluacio ´n de la sostenibilidad de biorefinerias. Memorias del
                 XXV Encuentro Nacional de la AMIDIQ. pp. 3281–3286.
   121   122   123   124   125   126   127   128   129   130   131