Page 123 - Biofuels for a More Sustainable Future
P. 123
110 Biofuels for a More Sustainable Future
Bergmann, J.C., et al., 2013. Biodiesel production in Brazil and alternative biomass feed-
stocks. Renew. Sust. Energ. Rev. 21, 411–420.
Bio2Value, 2015. Biorefinery Concepts. Retrieved from: http://biorefinery.nl/background-
biorefinery/biorefinery-concepts/.
BNDES, 2008. Bioetanol de cana-de-ac¸u ´car: energia para o desenvolvimento sustenta ´vel,
first ed. Organizac¸a ˜o BNDES & CGEE, Rio de Janeiro. 316 p.
BNDES, 2017. Financiamentos – Taxa de Juros, Banco Nacional de Desenvolvimento.
Retrieved from: https://www.bndes.gov.br/wps/portal/site/home/financiamento.
Cardona, C.A., Moncada, J., 2016. Design strategies for sustainable biorefineries. Biochem.
Eng. J. 116, 122–134.
Carvalho, M., Abrahao, R., 2017. Environmental and economic perspectives in the analysis
of two options for hand drying at an university campus. Int. J. Emerg. Res. Manag. Tech-
nol. 6, 24–35.
Carvalho, M., Millar, D.L., 2012. Concept development of optimal mine site energy supply.
Energies 5 (11), 4726–4745.
Carvalho, M., Silva, V.B., Medeiros, M.G., Santos, N.A., Coelho Junior, L.M., 2019. Car-
bon footprint of the generation of bioelectricity from sugarcane bagasse in a sugar and
ethanol industry. Int. J. Global Warm. 17 (3), 235–251.
CGEE, 2010. Centro de Gesta ˜o e Estudos Estrat egicos—Quı ´mica verde no Brasil:
¸˜
2010–2030—Edicao revista e atualizada. Brası ´lia.
Chacartegui, R., Carvalho, M., Abraha ˜o, R., Becerra, J., 2015. Analysis of a CHP plant in a
municipal solid waste landfill in the South of Spain. Appl. Therm. Eng. 91, 706–717.
Chemical Engineering, 2017. Current Economic Trends CEPCI January Prelim and
December Final. Retrieved from: http://www.chemengonline.com/.
Coelho Jr. L.M., de Lourdes da Costa Martins, K., Carvalho, M., 2018. Carbon footprint
associated with firewood consumption in Northeast Brazil: an analysis by the IPCC
2013 GWP 100y criterion. Waste Biomass Valoriz 1, 1–9.
Dahlquist, E., 2013. Technologies for converting biomass to useful energy: combustion,
gasification, pyrolysis, torrefaction and fermentation. Sustain. Energ. Dev. 4. 520 p.
ISBN: 9780415620888.
Dantas, R.S., 2013. Caracterı ´sticas agron^omicas de cultivares de sorgo forrageiro para
¸˜
producao de silagem no Subm edio do Vale do Sa ˜o Francisco. Acta Sci. Anim. Sci.
1807-8672. 35 (1), 13–19.
Delgado, D.B.M., Carvalho, M., Coelho Junior, L.M., Chacartegui, R., 2018. Analysis of
biomass-fired boilers in a polygeneration system for a hospital. Front. Manage. Res. 1, 1.
Dias, M.O.S., Pereira, L.G., Junqueira, T.L., Pavanello, L.G., Chagas, M.F., Cavalett, O.,
Filho, R.M., Bonomi, A., 2014. Butanol production in a sugarcane biorefinery using
ethanol as feedstock. Part I: integration to a first generation sugarcane distillery. Chem.
Eng. Res. Des. 92, 1441–1451.
EPE. Balanc ¸o Energ etico nacional, 2016. Ano base 2015. Empresa de Pesquisa Energ etica,
Rio de Janeiro.
Escobar, J.C., Lora, E.E.S., Venturini, O.J., Yan ˜ez, E.E., Castillo, E.F., Almazan, O., 2009.
Biofuels: environment, technology and food security. Renew. Sust. Energ. Rev.
13, 1275–1287.
Ett, G., Landgraf, F.J.G., Yu, A.S., Poco, J.G., Derenzo, S., Numis, A., Silveira, J.R.F., 2014.
BIOSYNGAS – Biomass Entrained Flow Gasification. In: WasteEng 5th International
Conference on Engineering for Waste and Biomass Valorization, Rio de Janeiro.
Fatih Demirbas, M., 2009. Biorefineries for biofuel upgrading: a critical review. Appl. Energy
86 (Suppl. 1), S151–S161.
Fava, F., Totaro, G., Diels, L., Reis, M., Duarte, J., Poggi-Varaldo, M., Carioca, O.B., 2015.
Biowaste biorefinery in Europe: opportunities and research & development needs.
N. Biotechnol. 32(1).