Page 125 - Biofuels for a More Sustainable Future
P. 125
112 Biofuels for a More Sustainable Future
Mascal, M., 2012. Chemicals from biobutanol: technologies and markets. Biofuels Bioprod.
Biorefin. 6, 483–493.
Michailos, S., Parker, D., Webb, C., 2016. A multicriteria comparison of utilizing sugar cane
bagasse for methanol to gasoline and butanol production. Biomass Bioenergy
95, 436–448.
MME, 2016. Resenha Energ etica Brasileira – Exercı ´cio de 2015. Minist erio de Minas e Ener-
gia, Brasilia – DF.
Natalense, J., Zouain, D., 2013. Technology roadmapping for renewable fuels: case of bio-
butanol in Brazil. J. Technol. Manag. Innov. 8 (4), 143–152.
Ndaba, B., Chiyanzu, I., Marx, S., 2015. n-Butanol derived from biochemical and chemical:
a review. Biotechnol. Rep. 8, 1–9.
Neves, T.I., Uyeda, C.A., Carvalho, M., Abraha ˜o, R., 2018. Environmental evaluation of
the life cycle of elephant grass fertilization Cenchrus purpureus (Schumach.) Morrone
using chemical fertilization and biosolids. Environ. Monit. Assess. 190, 30.
¸˜
Nuncira, D.L.V., 2013. Ana ´lise termodin^amica da producao de biobutanol em uma biore-
finaria brasileira. Dissertac¸a ˜o de Mestrado Univ. Federal de Itajuba ´, Itajuba ´.
Ojeda, K., Sa ´nchez, E., El-Halwagi, M., Kafarov, V., 2011. Exergy analysis and process inte-
gration of bioethanol production from acid pre-treated biomass: comparison of SHF, SSF
and SSCF pathways. Chem. Eng. J. 176–177, 195–201.
Oliv rio, J.L., Barreira, S.T., Rangel, S.C.P., 2014. Integrated biodiesel production in
e
Barralcool sugar and alcohol mill. In: Cortez, L.A.B. (Coord.), Sugarcane Bioethanol—
R&D for Productivity and Sustainability, Editora Edgard Bl€ucher, Sa ˜oPaulo,
pp. 661–678.
¸
ONU, 2015. Adocao do acordo paris. Convencao Quadro Sobre Mudanca Do Clima
¸˜
¸˜
4, 1–42. Retrieved from: https://nacoesunidas.org/wp-content/uploads/2016/04/
Acordo-de-Paris.pdf.
Petersen, A.M., Melamu, R., Knoetze, J.H., G€orgens, J.F., 2015. Comparison of second-
generation processes for the conversion of sugarcane bagasse to liquid biofuels in terms
of energy efficiency, pinch point analysis and Life Cycle Analysis. Energy Convers.
Manag. 91, 292–301.
¸
PETROBRAS, 2013. Os desafios do etanol lignocelulo ´sico no Brasil—O bagaco da cana-
¸
de-acu ´car como uma nova fonte de etanol. 1ª Semena de biotecnologia do estado do,
Rio de Janeiro 12/09/2013.
REN21, 2018. Renewables. In: Global Status Report. Retrieved from: http://www.ren21.
net/wp-content/uploads/2018/06/17-8652_GSR2018_FullReport_web_final_.pdf.
(Accessed 31 July 2018).
Reno ´, M.L.G., Lora, E.E.S., Palacio, J.C.E., Venturini, O.J., Bushgeister, J., Almazan, O.,
2011. A LCA (life cycle assessment) of the methanol production from sugarcane bagasse.
Energy 36 (6), 3716–3726.
Rezayan, J., Cheremisinoff, N.P., 2005. Gasification Technologies—A Primer for Engineers
and Scientists, first ed. CRC Press, Boca Raton, FL.
¸˜
Rocha, M.H., 2015. AvaliacaoT ecnico-Econ^omica de Biorrefinarias para a Producaode
¸˜
Biocombustı ´veis Lı ´quidos e Eletricidade Atrav es da Gaseificac¸a ˜o de Biomassa. Tese de
Doutorado. Universidade Federal de Itajuba ´, Itajuba ´.
Sacramento-Rivero, J.C., 2012. A methodology for evaluating the sustainability of biorefi-
neries: framework and indicators. Biofuels Bioprod. Biorefin. 6, 32–44.
Seabra, J.E.A., et al., 2011. Life cycle assessment of Brazilian sugarcane products: GHG emis-
sions and energy use. Biofuels Bioprod. Biorefin. 5 (5), 519–532.
Serra, L.M., Carvalho, M., Lozano, M.A., 2014. Tackling environmental impacts in simple
trigeneration systems operating under variable conditions. Int. J. Life Cycle Assess.
19, 1087–1098.