Page 124 - Biofuels for a More Sustainable Future
P. 124
Indicators for sustainability assessment 111
Garcia-Nunez, J.A., Rodriguez, D.T., Fontanilla, C.A., Ramirez, N.E., Lora, E.E.,
Frear, C.S., Stockle, C., Amonette, K., Garcia-Perez, M., 2016. Evaluation of alterna-
tives for the evolution of palm oil mills into biorefineries. Biomass Bioenergy
95, 310–329.
Gebreslassie, B.H., Slivinsky, M., Wang, B., You, F., 2013. Life cycle optimization for
sustainable design and operations of hydrocarbon biorefinery via fast pyrolysis, hydro-
treating and hydrocracking. Comput. Chem. Eng. 50, 71–91.
Ghatak, H.R., 2011. Biorefineries from the perspective of sustainability: feedstocks, prod-
ucts, and processes. Renew. Sust. Energ. Rev. 15 (8), 4042–4052.
Gnansounou, E., 2018. Coproducts performances in biorefineries: development of claiming-
based allocation models for environmental policy. Bioresour. Technol. 254, 31–39.
Hassunai, S.J., Leal, M.R.L.V., Macedo, I.C., 2005. Biomass Power Generation—Sugar
Cane Bagasse and Trash. PNUD—CTC, Piracicaba.
Higman, C., 2015. State of the gasification industry: worldwide gasification database 2015
update. In: Gasification Technologies Conference, Colorado, Springs, 14 October.
Ho, D.P., Ngo, H.H., Guo, W., 2014. A mini review on renewable sources for biofuel. Bior-
esour. Technol. 169, 742–749.
Hoekman, S.K., 2009. Biofuels in the U.S.—challenges and opportunities. Renew. Energy
34 (1), 14–22.
IEA, 2014. The role of industry in a transition towards the BioEconomy (BE) in relation to
biorefinery. In: Workshop i-SUP2014, IEA Bioenergy, Task 42 Biorefining, Antwerp,
Belgium. Wednesday afternoon 3 September.
Im-orb, K., Simasatitkul, L., Arpornwichanop, A., 2016. Techno-economic analysis of the
biomass gasification and Fischer-Tropsch integrated process with off-gas recirculation.
Energy 94, 483–496.
Ishiyama, E.M., Paterson, W.R., 2011. Modeling and simulation of the polymeric nanocap-
sule formation process. AICHE J. 57 (11), 3199–3209.
Jong, E.D., Jungmeier, G., 2015. Biorefinery concepts in comparison to petrochemical refin-
eries. (Chapter 1). In: Industrial Biorefineries and White Biotechnology. Elservier,
Amsterdam, 700 p.
Jungmeier, G., Van Ree, R., de Jong, E., Jørgensen, H., Walsh, P., Wellisch, M.,
Stichnothe, H., Bari, I., Klembara, M., Garnier, G., 2013. Possible Role of a Biorefinerys
Syngas Platform in a Biobased Economy. In: Assessment in IEA Bioenergy Task
42 “Biorefining”, Vienna.
Kamm, B., Kamm, M., 2007. International biorefinary systems. Pure Appl. Chem. 79 (11),
1983–1997.
Larson, E.D., Jin, H., Celik, F.E., 2009. Large-scale gasification-based coproduction of fuels
and electricity from switchgrass. Biofuels Bioprod. Biorefin. 3 (2), 174–194.
Leal, M.R., Nogueira, L.A., Cortez, L.A., 2013a. Land demand for ethanol production.
Appl. Energy 102, 266–271.
Leal, R.M.L., Galdos, V.M.V., Seabra, J.E.A., Walter, A., Oliveira, C.O.F., 2013b. Sugar-
cane straw availability, quality, recovery and energy use: a literature review. Biomass
Bioenergy 53, 11–19.
Lora, E.E.S., Venturini, O.J., 2012. Biocombustı ´veis, first ed. vol. 1. Editora Interci^encia,
Rio de Janeiro 1149 p.
Manochio, C., Andrade, B.R., Rodriguez, R.P., Moraes, B.S., 2017. Ethanol from biomass:
a comparative overview. Renew. Sust. Energy Rev. 80, 743–755.
Mariano, A.P., Bonomi, A., Perreira, L.G., Dias, M.O.S., Chagas, M.F., Gouv^eia, V., 2014.
¸˜
Producao de butanol integrada a ` biorrefinaria de cana—2° Anua ´rio brasileiro de biomassa
e energias renova ´veis.
Marino, E., 2014. Desempenho de caldeiras com palha de cana-de-ac¸u ´car Semina ´rio
STAB—Fenasucro Agroindustrial. Serta ˜ozinho 28 de agosto de.