Page 267 - Cam Design Handbook
P. 267

THB9  9/19/03  7:26 PM  Page 255

                                 CAM MATERIALS AND LUBRICATION             255

                       TABLE 9.1  Constants for Contact Ellipse

                       q        m       n       q       m        n
                       35°    2.397    0.530    65°    1.378   0.759
                       40°    2.136    0.567    70°    1.284   0.802
                       45°    1.926    0.604    75°    1.202   0.846
                       50°    1.754    0.641    80°    1.128   0.893
                       55°    1.611    0.678    85°    1.061   0.944
                       60°    1.486    0.717    90°    1.000   1.000
                                B - A
                       Note:  cosq =
                                B + A

            curvature at the point of contact, and y as the angle between the planes containing the
                     1     1
            curvatures    and   ,  then
                     r    r¢
                         1  Ê 1  1  1  1  ˆ
                   AB =   Á  +   +   +   ˜                                 (9.6)
                    +
                         2  Ë r  ¢ r  r  r ¢ ¯
                            1   1   2   2
                                  2          2                       12
                         1  Ê È 1  1  ˆ  Ê 1  1  ˆ  Ê 1  1  ˆÊ 1  1  ˆ  ˘
                    -
                   BA =    Á Í  -  ˜ + Á  -  ˜ + Á 2  -  ˜Á  -  ˜ cos 2y  ˙  .  (9.7)
                         2  Î Ë r 1  r 1 ¢ ¯  Ë r  2  r ¢ ¯  Ë r 1  r ¢ ¯Ë r 2  r 2 ¢ ¯  ˚
                                                      1
                                           2
            Therefore, the dimensions a and b of the ellipse depend on the shape, applied force, and
            material properties of the two contacting bodies.
               Next,  let  us  consider  two  cylinders of  infinite  length  in  contact.  For  two  long
            elastic cylinders having radii r 1 and r 2 aligned so that their axes are parallel (Fig. 9.2),
            the “elliptical boundary” of contact degenerates into parallel lines. The contact area thus
            becomes a “rectangle” of infinite length (in practice, the length of the cylinder) and of
            width 2b given by
                                           Ê 16P¢r ˆ  12
                                       2b =                                (9.8)
                                           Ë  p E  ¯
                                                              rr
            where P¢ is the normal force per unit length of the cylinder r =  1  2  .  Note that the
                                                             ( r +  r )
                                                              1   2
            contact zone’s dimension varies as the one-half power of the load, rather than the one-
            third power as in the previous case. The normal pressure distribution is given as
                                                  12
                                                2
                                            Ê  y  ˆ
                                       p =  p 1 -                          (9.9)
                                           0 Ë  b 2 ¯
                     2 P¢
            where  p =  .
                  0
                      p b
            From the geometry of circles (see Fig. 9.2) the depressed depths of contact are
                                       h = r 1  - r 1 2  -  b  2          (9.10)
                                       1
                                      h = r 2  - r 2 2  - b .
                                                   2
                                       2
   262   263   264   265   266   267   268   269   270   271   272