Page 383 - Cam Design Handbook
P. 383

THB12  9/19/03  7:34 PM  Page 371

                                CAM SYSTEM DYNAMICS—ANALYSIS               371



























                  FIGURE 12.8.  Cam example (chatter resulted from resonance with strong 18th har-
                  monic number).




            Based on the free-body diagrams, applying Newton’s second law, we obtain
                                   mx ˙˙ =  b z ˙ +  k z - b z ˙ -  k z
                                                  1 1
                                              22
                                    1 1
                                         22
                                                      1 1
                                   mx ˙˙ =- b z ˙ -  k z                  (12.9)
                                    2 2   22   22
            where z 1 = x 1 - y and z 2 = x 2 - x 1 are the relative coordinates.
            Eq. (12.9) can be rearranged as
                                 mz ˙˙ +  b z ˙ +  k z =  b z ˙ +  k z -  m y ˙˙
                                  11  11   11  2 2  2 2  1
                                                  (
                                                     y ˙˙ .
                                mz ˙˙ +  b z ˙ +  k z = - m z ˙˙ + )     (12.10)
                                 22   22  22     2  1
            Substituting the first expression for z 1 into the second Eq. (12.10) leads to the following
                                       ¨
                                   ˙˙ z +  2zw  ˙ z +w  2 z = -w d
                                                     2
                                    1   1  1 1  1 1  1  1
                                                     2
                                   ˙˙ z +  2zw  ˙ z +w  2 z = -w d  ,
                                   2    2  2 2  2 2  2  2                (12.11)
            where
                                   ˙˙ y  b  k
                              d =    -  2  ˙ z  -  2  z
                               1         2    2
                                  w  2  k  k
                                   1   1    1
                                     b      b     w  2  m
                              d =-   1  ˙ z  +  2  ˙ z  -  1  z  +  2  z
                               2        1       2     1    2
                                   m  w  2  m w  2  w  2  m
                                     1  2   1  2    2    1
                                   k       k
                              w =  1  ,  w =  2
                                2
                                        2
                               1        2
                                  m        m
                                    1       2
   378   379   380   381   382   383   384   385   386   387   388