Page 434 - Cam Design Handbook
P. 434

THB13  9/19/03  7:56 PM  Page 422

          422                      CAM DESIGN HANDBOOK


                                 Ê 0   1  0  0 0 ˆ  Ê ˆ 0
                                 Á -r 0  -r 1  r 0  00 ˜  Á ˜ 0
                                 Á              ˜   Á ˜
                              ˙ x =  Á  00  0  10 x + Á ˜ 0 u          (13.46)
                                                ˜
                                 Á  0  0  0  0 1 ˜  Á ˜
                                                     0
                                 Á              ˜   Á ˜
                                 Ë 0   0  0  0  ¯ 0  Ë ¯ 1
          and
                                        0 Ê ˆ     1 Ê ˆ
                                        0 Á ˜     0 Á ˜
                                       Á ˜       Á ˜
                                                  1
                                        0
                                  x 0 () = Á ˜ ,  x 1 () = Á ˜ .       (13.47)
                                       Á ˜       Á ˜
                                                  0
                                        0
                                       Á ˜       Á ˜
                                        0 Ë ¯     0 Ë ¯
          By defining the Hamiltonian, H, of Eq. (13.42) and using the state Eq. (13.46), a two-point
          boundary-value problem can be obtained as follows:
          State equation:
                                Ê                                 ˆ
                                Á x 2                             ˜
                                Á -rx  - r x  + rx                ˜
                                           0 3
                                       1 2
                                   0 1
                                Á                                 ˜
                      ∂H         x
                   ˙ x =  ( xp t  Á  4                            ˜
                           ,, ) =
                       ∂ p      Á x                               ˜
                                Á  5                              ˜
                                Á rr   (r 1 2  - )  rr  r 0    p 5  ˜  (13.48)
                                           r
                                            0
                                  01
                                                 01
                                Á  K  x 1  +  K  x 2  -  K  x 3  +  K  x 4  -  2 WK  2  ˜
                                Ë  k      k       k     k      2  k  ¯
          Costate equation:
                          Ê    ˙˙         2      2  ∂N F        rr ˆ
                                                                01
                                    2
                            2
                                             2
                          Á - WF r  + W F N F  - W F N  F  ∂x  + pr  - p  K  ˜
                                      3
                                                          205
                                               3
                                        fe
                                                fe
                               1
                                fe 0
                          Á                           1          k  ˜
                          Á     ˙˙           r 1 2  - r 0          ˜
                            2
                          Á - Wr F fe  - p 1  + p r  - p 5  K      ˜
                                        2 1
                               11
                          Á                     k                  ˜
                ∂H        Á                          ∂ N        rr ˜
                               ˙˙
              ˙ p =  ( xp t  Wr F  - W K F N  2  - W F N  F  -  pr +  p  01
                     ,, ) = 2
                                                  2
                                   2
                                             2
                                fe
                 ∂ x      Á  103       k  fe  F  3  fe fe  F  ∂ x  305  K  ˜  (13.49)
                          Á                            3          k  ˜
                          Á     2   ∂ N F      r 0                 ˜
                          Á - 2 WF N F  ∂ x  -  p -  p 5  K        ˜
                                          3
                               3
                                fe
                          Á           4         k                  ˜
                          Á                 ∂ N                    ˜
                                 ˙˙
                                         2
                          Á - 2 WK F - 2 W F N  F  -  p            ˜
                          Ë    1  k  fe  3  fe  F  ∂ x  4          ¯
                                              5
          Boundary Conditions: use Eq. (13.47).
          13.5.8.2 Solution  of  the  Two-Point  Boundary-Value  Problem.  The  two-point
          boundary-value problem given by Eqs. (13.48) and (13.49) cannot be integrated directly.
                                          (0)
          A trial initial value for the costate vector, p (0), is chosen and the system of Eq. (13.48)
                                                                     (0)
          and (13.49) are integrated forward in time. In general, however, the final state, x (1) will
          not coincide with the boundary condition x(1) specified by Eq. (13.47). It is necessary,
                                                              (0)
          therefore,  to  develop  a  new  and  hopefully  improved  estimate  of  p (0)  based  on  the
   429   430   431   432   433   434   435   436   437   438   439