Page 77 - Cam Design Handbook
P. 77

THB3  8/15/03  12:58 PM  Page 65

                                     MODIFIED CAM CURVES                    65


                    Ê           b ˆ
            At point D i.e., when  =q  the total displacement can be found from this equation to be
                    Ë           2 ¯
                                            Ê   p  ˆ
                                        y =  h¢ 1 +  .
                                            Ë   2 ¯
            The displacement of the final segment is

                                        y =-   1  y 2
                                           y y -
                                         3
            or
                                          Ê  1  p  1  ˆ
                                     y =  h¢ Ë  4  +  4  +  2p  ¯ .
                                      3
            From the relationship
                                                 h
                                       y +  y +  y =  ,
                                           2
                                        1
                                               3
                                                 2
            we establish the relationship between h¢ and h
                                              h
                                         h ¢ =   .                         (3.6)
                                             2  + p
            Therefore, the displacement equations of the first three segments are

                          h Ê 2q   1      q  ˆ                   b         (3.7)
                                                             ££
                      y =    Á   -   sin 4p  ˜             0 q
                         2 + p  Ë b  2p   b  ¯                   8
                          h  È1   1  2  Ê  b ˆ  4p  Ê  b  ˆ  2 ˘  b  3
                                                              q
                      y =    Í  -   +   q  -  +   q  -  ¯ ˙  ££    b
                         2 + p  Î 4  2p  b  Ë  8 ¯  b 2  Ë  8  ˚  8  8
                                                      b  ˘
                                                   q  -
                          h  È p        q    1          ˙  3       b
                      y =     -  + ( 21 p  +   sin 4p  2  ˙ ˙  bq   .
                                     + )
                                                              ££
                         2 + p  Í Î 2   b   2p       b     8       2
                                                        ˙
                                                        ˚
            Evaluating all constants, characteristic curve equations are:
                   q   1
            for q £  £ ,                                                  (3.8)
                   b   8
                                             Ê q  1      q  ˆ
                                    .
                                 y = 009724613 hÁ4  -  sin 4p  ˜
                                             Ë b  p      b ¯
                                           h Ê       q  ˆ
                                    .
                                y¢ = 03889845  Á1 - cos 4p  ˜
                                           b  Ë      b ¯
                                           h      q
                                y¢¢ = 4 888124  sin  4p
                                    .
                                           b  2   b
                                            h      q
                                     .
                               y¢¢¢ = 61 425975  cos 4p
                                           b  3    b
   72   73   74   75   76   77   78   79   80   81   82