Page 75 - Cam Design Handbook
P. 75

THB3  8/15/03  12:58 PM  Page 63

                                     MODIFIED CAM CURVES                    63

            Therefore, the general equations of the curve from B to C are

                                         Ê   b  ˆ  1  Ê  b  ˆ  2
                                  y =  y +  v q  -  8  ¯  +  2  a q  -  8 ¯
                                                   Ë
                                         Ë
                                        0
                                     1
                                        Ê   b ˆ
                                 y¢ =  v +  a q  -
                                     0  Ë   8 ¯
                                 y¢¢ =  a.
            To get displacement, velocity, and acceleration to match at the junction B, it is necessary
            that
                                             2 h¢
                                          v =
                                          0
                                              b
                                             8p h¢
                                          a =
                                              b  2
            Therefore, the equations from B to C are

                                 Ê 1  1  ˆ  2 h¢ Ê  b ˆ  4p h¢  Ê  b  ˆ  2
                             y =  h¢  -  +   q  -  +     q  -              (3.3)
                                 Ë  4  2p  ¯  b  Ë  8 ¯  b  2  Ë  8  ¯
                               2 h¢  8p h¢  Ê  b  ˆ
                            y¢ =  +     q  -
                                b    b  2  Ë  8  ¯
                               8p h¢
                            y¢¢ =  .
                                b  2
                                   3
            When point C is reached, q =  b.  Substituting in Eq. (3.3), we obtain
                                   8
                                          3    h¢  p h¢
                                       y =  h¢ -  +
                                          4   2p   4
                                               h¢  p h¢
                                         y y =
                                    \ y = -  1   -
                                       2
                                                2   4
            The cycloidal displacement is the sum of a constant velocity displacement and a quarter
            sine wave displacement. The displacement equation of the curve from C to D is
                                             3        Ê     b
                                          q  - b         q  -  ˆ
                            y =  y +  y +  C +  C 2  8  +  C sin Á 4p  2  ˜ .
                                                   3
                                      1
                                  2
                               1
                                            b         Á Á  b  ˜ ˜
                                                      Ë       ¯
            Hence,
                                                       b
                                                    q  -
                                      C     4p
                                   y ¢ =  2  + C  cos  4p  2
                                      b    3  b      b
                                                     b
                                                  q  -
                                         16p  2      2
                                  y ¢¢ =-C 3  sin  4p                      (3.4)
                                          b  2      b
   70   71   72   73   74   75   76   77   78   79   80