Page 217 - Carbon Nanotube Fibres and Yarns
P. 217
Mechanics modeling of carbon nanotube yarns 207
[60] Y. Shang, X. He, Y. Li, L. Zhang, Z. Li, C. Ji, E. Shi, P. Li, K. Zhu, Q. Peng, C. Wang,
X. Zhang, R. Wang, J. Wei, K. Wang, H. Zhu, D. Wu, A. Cao, Super-stretchable
spring-like carbon nanotube ropes. Adv. Mater. 24 (21) (2012) 2896–2900, https://
doi.org/10.1002/adma.201200576.
[61] Y. Shang, Y. Li, X. He, S. Du, L. Zhang, E. Shi, S. Wu, Z. Li, P. Li, J. Wei, K. Wang,
H. Zhu, D. Wu, A. Cao, Highly twisted double-helix carbon nanotube yarns. ACS
Nano 7 (2) (2013) 1446–1453, https://doi.org/10.1021/nn305209h.
[62] Y. Shang, X. He, C. Wang, L. Zhu, Q. Peng, E. Shi, S. Wu, Y. Yang, W. Xu, R. Wang,
S. Du, A. Cao, Y. Li, Large-deformation, multifunctional artificial muscles based on
single-walled carbon nanotube yarns. Adv. Eng. Mater. 17 (1) (2015) 14–20, https://
doi.org/10.1002/adem.201400163.
[63] W. Guo, C. Liu, F. Zhao, X. Sun, Z. Yang, T. Chen, X. Chen, L. Qiu, X. Hu, H. Peng,
A novel electromechanical actuation mechanism of a carbon nanotube fibre. Adv.
Mater. 24 (39) (2012) 5379–5384, https://doi.org/10.1002/adma.201201845.
[64] J. Foroughi, G.M. Spinks, G.G. Wallace, J. Oh, M.E. Kozlov, S. Fang, T. Mirfakhrai,
J.D.W. Madden, M.K. Shin, S.J. Kim, R.H. Baughman, Torsional carbon nanotube
artificial muscles. Science 334 (6055) (2011) 494–497, https://doi.org/10.1126/sci-
ence.1211220.
[65] M.D. Lima, N. Li, M.J. de Andrade, S. Fang, J. Oh, G.M. Spinks, M.E. Kozlov,
C.S. Haines, D. Suh, J. Foroughi, S.J. Kim, Y. Chen, T. Ware, M.K. Shin, L.D. Macha-
do, A.F. Fonseca, J.D.W. Madden, W.E. Voit, D.S. Galvão, R.H. Baughman, Electri-
cally, chemically, and photonically powered torsional and tensile actuation of hybrid
carbon nanotube yarn muscles. Science 338 (6109) (2012) 928–932, https://doi.
org/10.1126/science.1226762.
[66] K.-Y. Chun, S.H. Kim, M.K. Shin, C.H. Kwon, J. Park, Y.T. Kim, G.M. Spinks,
M.D. Lima, C.S. Haines, R.H. Baughman, S.J. Kim, Hybrid carbon nanotube yarn ar-
tificial muscle inspired by spider dragline silk. Nat. Commun. 5 (2014) 3322, https://
doi.org/10.1038/ncomms4322.
[67] J.A. Lee, Y.T. Kim, G.M. Spinks, D. Suh, X. Lepró, M.D. Lima, R.H. Baughman,
S.J. Kim, All-solid-state carbon nanotube torsional and tensile artificial muscles. Nano
Lett. 14 (5) (2014) 2664–2669, https://doi.org/10.1021/nl500526r.
[68] N. Behabtu, M.J. Green, M. Pasquali, Carbon nanotube-based neat fibres. Nano To-
day 3 (5–6) (2008) 24–34, https://doi.org/10.1016/S1748-0132(08)70062-8.
[69] W. Lu, M. Zu, J.-H. Byun, B.-S. Kim, T.-W. Chou, State of the art of carbon na-
notube fibres: opportunities and challenges. Adv. Mater. 24 (14) (2012) 1805–1833,
https://doi.org/10.1002/adma.201104672.
[70] X. Zhang, Q. Li, Toward multifunctional carbon nanotube fibres, in: Q. Zhang (Ed.),
Carbon Nanotubes and Their Applications, Pan Stanford Publishing, Singapore, 2012,
pp. 467–499 (Ch. 14).
[71] M. Miao, Yarn spun from carbon nanotube forests: production, structure, properties
and applications. Particuology 11 (4) (2013) 378–393, https://doi.org/10.1016/j.par-
tic.2012.06.017.
[72] J. Di, X. Zhang, Z. Yong, Y. Zhang, D. Li, R. Li, Q. Li, Carbon-nanotube fibres for
wearable devices and smart textiles. Adv. Mater. 28 (47) (2016) 10529–10538, https://
doi.org/10.1002/adma.201601186.
[73] D. Janas, K.K. Koziol, Carbon nanotube fibres and films: synthesis, applications and
perspectives of the direct-spinning method. Nanoscale 8 (47) (2016) 19475–19490,
https://doi.org/10.1039/c6nr07549e.
[74] C. Gégauff, Force et elasticite des files en coton, Bull. Soc. Ind. Mulhouse 77 (1907)
153–213.
[75] W.E. Morton, K.C. Yen, The arrangement of fibres in fibro yarns. J. Text. Inst. 43 (2)
(1952) T60–T66, https://doi.org/10.1080/19447025208659646.