Page 218 - Carbon Nanotube Fibres and Yarns
P. 218

208   Carbon Nanotube Fibers and Yarns


            [76]  B.S. Gupta, Fibre migration in staple yarns part III: an analysis of migration force and
               the influence of the variables in yarn structure. Text. Res. J. 42 (3) (1972) 181–196,
               https://doi.org/10.1177/004051757204200310.
            [77]  J.W.S. Hearle, P. Grosberg, S. Backer, Structural Mechanics of Fibres, Yarns, and Fab-
               rics, Wiley-Interscience, New York, 1969.
            [78]  M. Miao, J. McDonnell, L. Vuckovic, S.C. Hawkins, Poissons ratio and porosity of
               carbon nanotube dry-spun yarns. Carbon 48 (10) (2010) 2802–2811, https://doi.
               org/10.1016/j.carbon.2010.04.009.
            [79]  S. Fang, M. Zhang, A.A. Zakhidov, R.H. Baughman, Structure and process- dependent
               properties of solid-state spun carbon nanotube yarns. J. Phys. Condens. Matter 22 (33)
               (2010) 334221, https://doi.org/10.1088/0953-8984/22/33/334221.
            [80]  K. Liu, Y. Sun, R. Zhou, H. Zhu, J. Wang, L. Liu, S. Fan, K. Jiang, Carbon nanotube
               yarns with high tensile strength made by a twisting and shrinking method. Nanotech-
               nology 21 (4) (2010) 045708, https://doi.org/10.1088/0957-4484/21/4/045708.
            [81]  J. Zhao, X. Zhang, Y. Huang, J. Zou, T. Liu, N. Liang, F. Yu, Z. Pan, Y. Zhu, M. Miao,
               Q. Li, A comparison of the twisted and untwisted structures for one-dimensional car-
               bon nanotube assemblies. Mater. Des. 146 (2018) 20–27, https://doi.org/10.1016/j.
               matdes.2018.02.068.
            [82]  Q. Rong, J. Wang, Y. Kang, Y. Li, Q.-H. Qin, A damage mechanics model for twisted
               carbon nanotube fibres. Acta Mech. Solida Sin. 25 (4) (2012) 342–347, https://doi.
               org/10.1016/S0894-9166(12)60031-7.
            [83]  A.A.  Kuznetsov, A.F.  Fonseca, R.H.  Baughman, A.A.  Zakhidov, Structural model
               for dry-drawing of sheets and yarns from carbon nanotube forests. ACS Nano 5 (2)
               (2011) 985–993, https://doi.org/10.1021/nn102405u.
           [84]  H.E.  Daniels, The  statistical  theory  of  the  strength  of  bundles  of  threads.  I.
               Proc. R. Soc. Lond.  A 183 (995) (1945) 403–435,  https://doi.org/10.1098/
               rspa.1945.0011.
            [85]  J. Gregory, Cotton yarn structure Part IV–the strength of twisted yarn elements in
               relation to the properties of the constituent fibres. J. Text. Inst. 44 (11) (1953) T499–
               T514, https://doi.org/10.1080/19447025308662613.
            [86]  O.W.  Morlier, R.S.  Orr, J.N.  Grant,  The relation of length to other physi-
               cal properties of cotton fibres.  Text. Res. J. 21 (1) (1951) 6–13,  https://doi.
               org/10.1177/004051755102100102.
           [87]  P.K. Porwal, I.J. Beyerlein, S.L. Phoenix, Statistical strength of a twisted fibre
               bundle: an extension of daniels equal-load-sharing parallel bundle   theory.
               J. Mech. Mater. Struct. 1 (8) (2006) 1425–1447,  https://doi.org/10.2140/
               jomms.2006.1.1425.
            [88]  P.K. Porwal, I.J. Beyerlein, S.L. Phoenix, Statistical strength of twisted fibre bundles
               with load sharing controlled by frictional length scales. J. Mech. Mater. Struct. 2 (4)
               (2007) 773–791, https://doi.org/10.2140/jomms.2007.2.773.
            [89]  I.J. Beyerlein, P.K. Porwal, Y.T. Zhu, K. Hu, X.F. Xu, Scale and twist effects on the
               strength of nanostructured yarns and reinforced composites. Nanotechnology 20 (48)
               (2009) 485702, https://doi.org/10.1088/0957-4484/20/48/485702.
            [90]  X. Wei, M. Naraghi, H.D. Espinosa, Optimal length scales emerging from shear load
               transfer in natural materials: application to carbon-based nanocomposite design. ACS
               Nano 6 (3) (2012) 2333–2344, https://doi.org/10.1021/nn204506d.
            [91]  X. Wei, M. Ford, R.A. Soler-Crespo, H.D. Espinosa, A new Monte Carlo model for
               predicting the mechanical properties of fibre yarns. J. Mech. Phys. Solids 84 (2015)
               325–335, https://doi.org/10.1016/j.jmps.2015.08.005.
            [92]  M.-F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Tensile loading of ropes of single wall
               carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84 (24) (2000)
               5552–5555, https://doi.org/10.1103/PhysRevLett.84.5552.
   213   214   215   216   217   218   219   220   221   222   223