Page 218 - Carbon Nanotube Fibres and Yarns
P. 218
208 Carbon Nanotube Fibers and Yarns
[76] B.S. Gupta, Fibre migration in staple yarns part III: an analysis of migration force and
the influence of the variables in yarn structure. Text. Res. J. 42 (3) (1972) 181–196,
https://doi.org/10.1177/004051757204200310.
[77] J.W.S. Hearle, P. Grosberg, S. Backer, Structural Mechanics of Fibres, Yarns, and Fab-
rics, Wiley-Interscience, New York, 1969.
[78] M. Miao, J. McDonnell, L. Vuckovic, S.C. Hawkins, Poissons ratio and porosity of
carbon nanotube dry-spun yarns. Carbon 48 (10) (2010) 2802–2811, https://doi.
org/10.1016/j.carbon.2010.04.009.
[79] S. Fang, M. Zhang, A.A. Zakhidov, R.H. Baughman, Structure and process- dependent
properties of solid-state spun carbon nanotube yarns. J. Phys. Condens. Matter 22 (33)
(2010) 334221, https://doi.org/10.1088/0953-8984/22/33/334221.
[80] K. Liu, Y. Sun, R. Zhou, H. Zhu, J. Wang, L. Liu, S. Fan, K. Jiang, Carbon nanotube
yarns with high tensile strength made by a twisting and shrinking method. Nanotech-
nology 21 (4) (2010) 045708, https://doi.org/10.1088/0957-4484/21/4/045708.
[81] J. Zhao, X. Zhang, Y. Huang, J. Zou, T. Liu, N. Liang, F. Yu, Z. Pan, Y. Zhu, M. Miao,
Q. Li, A comparison of the twisted and untwisted structures for one-dimensional car-
bon nanotube assemblies. Mater. Des. 146 (2018) 20–27, https://doi.org/10.1016/j.
matdes.2018.02.068.
[82] Q. Rong, J. Wang, Y. Kang, Y. Li, Q.-H. Qin, A damage mechanics model for twisted
carbon nanotube fibres. Acta Mech. Solida Sin. 25 (4) (2012) 342–347, https://doi.
org/10.1016/S0894-9166(12)60031-7.
[83] A.A. Kuznetsov, A.F. Fonseca, R.H. Baughman, A.A. Zakhidov, Structural model
for dry-drawing of sheets and yarns from carbon nanotube forests. ACS Nano 5 (2)
(2011) 985–993, https://doi.org/10.1021/nn102405u.
[84] H.E. Daniels, The statistical theory of the strength of bundles of threads. I.
Proc. R. Soc. Lond. A 183 (995) (1945) 403–435, https://doi.org/10.1098/
rspa.1945.0011.
[85] J. Gregory, Cotton yarn structure Part IV–the strength of twisted yarn elements in
relation to the properties of the constituent fibres. J. Text. Inst. 44 (11) (1953) T499–
T514, https://doi.org/10.1080/19447025308662613.
[86] O.W. Morlier, R.S. Orr, J.N. Grant, The relation of length to other physi-
cal properties of cotton fibres. Text. Res. J. 21 (1) (1951) 6–13, https://doi.
org/10.1177/004051755102100102.
[87] P.K. Porwal, I.J. Beyerlein, S.L. Phoenix, Statistical strength of a twisted fibre
bundle: an extension of daniels equal-load-sharing parallel bundle theory.
J. Mech. Mater. Struct. 1 (8) (2006) 1425–1447, https://doi.org/10.2140/
jomms.2006.1.1425.
[88] P.K. Porwal, I.J. Beyerlein, S.L. Phoenix, Statistical strength of twisted fibre bundles
with load sharing controlled by frictional length scales. J. Mech. Mater. Struct. 2 (4)
(2007) 773–791, https://doi.org/10.2140/jomms.2007.2.773.
[89] I.J. Beyerlein, P.K. Porwal, Y.T. Zhu, K. Hu, X.F. Xu, Scale and twist effects on the
strength of nanostructured yarns and reinforced composites. Nanotechnology 20 (48)
(2009) 485702, https://doi.org/10.1088/0957-4484/20/48/485702.
[90] X. Wei, M. Naraghi, H.D. Espinosa, Optimal length scales emerging from shear load
transfer in natural materials: application to carbon-based nanocomposite design. ACS
Nano 6 (3) (2012) 2333–2344, https://doi.org/10.1021/nn204506d.
[91] X. Wei, M. Ford, R.A. Soler-Crespo, H.D. Espinosa, A new Monte Carlo model for
predicting the mechanical properties of fibre yarns. J. Mech. Phys. Solids 84 (2015)
325–335, https://doi.org/10.1016/j.jmps.2015.08.005.
[92] M.-F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff, Tensile loading of ropes of single wall
carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84 (24) (2000)
5552–5555, https://doi.org/10.1103/PhysRevLett.84.5552.