Page 216 - Carbon Nanotube Fibres and Yarns
P. 216
206 Carbon Nanotube Fibers and Yarns
[45] J. Ren, Y. Zhang, W. Bai, X. Chen, Z. Zhang, X. Fang, W. Weng, Y. Wang, H. Peng,
Elastic and wearable wire-shaped lithium-ion battery with high electrochemical per-
formance. Angew. Chem. Int. Ed. 53 (30) (2014) 7864–7869, https://doi.org/10.1002/
anie.201402388.
[46] K. Wang, Q. Meng, Y. Zhang, Z. Wei, M. Miao, High-performance two-ply yarn su-
percapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv. Mater.
25 (10) (2013) 1494–1498, https://doi.org/10.1002/adma.201204598.
[47] Q. Meng, K. Wang, W. Guo, J. Fang, Z. Wei, X. She, Thread-like supercapacitors based
on one-step spun nanocomposite yarns. Small 10 (15) (2014) 3187–3193, https://doi.
org/10.1002/smll.201303419.
[48] H. Lin, W. Weng, J. Ren, L. Qiu, Z. Zhang, P. Chen, X. Chen, J. Deng, Y. Wang,
H. Peng, Twisted aligned carbon nanotube/silicon composite fibre anode for flexible
wire-shaped lithium-ion battery. Adv. Mater. 26 (8) (2014) 1217–1222, https://doi.
org/10.1002/adma.201304319.
[49] S. Pan, Z. Yang, P. Chen, J. Deng, H. Li, H. Peng, Wearable solar cells by stack-
ing textile electrodes. Angew. Chem. Int. Ed. 53 (24) (2014) 6110–6114, https://doi.
org/10.1002/anie.201402561.
[50] S. Pan, H. Lin, J. Deng, P. Chen, X. Chen, Z. Yang, H. Peng, Novel wearable energy
devices based on aligned carbon nanotube fibre textiles. Adv. Energy Mater. 5 (4)
(2015) 1401438, https://doi.org/10.1002/aenm.201401438.
[51] D. Zhang, M. Miao, H. Niu, Z. Wei, Core-spun carbon nanotube yarn supercapaci-
tors for wearable electronic textiles. ACS Nano 8 (5) (2014) 4571–4579, https://doi.
org/10.1021/nn5001386.
[52] C. Choi, J.A. Lee, A.Y. Choi, Y.T. Kim, X. Lepró, M.D. Lima, R.H. Baughman,
S.J. Kim, Flexible supercapacitor made of carbon nanotube yarn with inter-
nal pores. Adv. Mater. 26 (13) (2014) 2059–2065, https://doi.org/10.1002/
adma.201304736.
[53] L.K. Randeniya, A. Bendavid, P.J. Martin, C.-D. Tran, Composite yarns of multi-
walled carbon nanotubes with metallic electrical conductivity. Small 6 (16) (2010)
1806–1811, https://doi.org/10.1002/smll.201000493.
[54] G. Xu, J. Zhao, S. Li, X. Zhang, Z. Yong, Q. Li, Continuous electrodeposition for
lightweight, highly conducting and strong carbon nanotube-copper composite fibres.
Nanoscale 3 (10) (2011) 4215–4219, https://doi.org/10.1039/c1nr10571j.
[55] C. Subramaniam, T. Yamada, K. Kobashi, A. Sekiguchi, D.N. Futaba, M. Yumu-
ra, K. Hata, One hundred fold increase in current carrying capacity in a carbon
nanotube-copper composite. Nat. Commun. 4 (2013) 2202, https://doi.org/10.1038/
ncomms3202.
[56] R. Sundaram, T. Yamada, K. Hata, A. Sekiguchi, Electrical performance of light-
weight CNT-Cu composite wires impacted by surface and internal Cu spatial distri-
bution. Sci. Rep. 7 (2017) 9267, https://doi.org/10.1038/s41598-017-09279-x.
[57] J. Zou, D. Liu, J. Zhao, L. Hou, T. Liu, X. Zhang, Y. Zhao, Y.T. Zhu, Q. Li, Ni
nanobuffer layer provides light-weight CNT/Cu fibres with superior robustness, con-
ductivity, and ampacity. ACS Appl. Mater. Interfaces 10 (9) (2018) 8197–8204, https://
doi.org/10.1021/acsami.7b19012.
[58] B. Han, E. Guo, X. Xue, Z. Zhao, T. Li, Y. Xu, L. Luo, H. Hou, Fabricating and
strengthening the carbon nanotube/copper composite fibres with high strength
and high electrical conductivity. Appl. Surf. Sci. 441 (2018) 984–992, https://doi.
org/10.1016/j.apsusc.2018.02.078.
[59] R. Sundaram, T. Yamada, K. Hata, A. Sekiguchi, The importance of carbon nanotube
wire density, structural uniformity, and purity for fabricating homogeneous carbon
nanotube-copper wire composites by copper electrodeposition. Jpn. J. Appl. Phys. 57
(4) (2018) 04FP08, https://doi.org/10.7567/JJAP.57.04FP08.