Page 220 - Carbon Nanotube Fibres and Yarns
P. 220
210 Carbon Nanotube Fibers and Yarns
[109] M.J. Buehler, Mesoscale modeling of mechanics of carbon nanotubes: self- assembly,
self-folding, and fracture. J. Mater. Res. 21 (11) (2006) 2855–2869, https://doi.
org/10.1557/jmr.2006.0347.
[110] S.W. Cranford, M.J. Buehler, In silico assembly and nanomechanical characterization
of carbon nanotube buckypaper. Nanotechnology 21 (26) (2010) 265706, https://
doi.org/10.1088/0957-4484/21/26/265706.
[111] X. Liu, W. Lu, O.M. Ayala, L.-P. Wang, A.M. Karlsson, Q. Yang, T.-W. Chou, Micro-
structural evolution of carbon nanotube fibres: deformation and strength mechanism.
Nanoscale 5 (5) (2013) 2002–2008, https://doi.org/10.1039/C3NR32681K.
[112] J. Zhao, J.W. Jiang, L. Wang, W. Guo, T. Rabczuk, Coarse-grained potentials of
single-walled carbon nanotubes. J. Mech. Phys. Solids 71 (2014) 197–218, https://doi.
org/10.1016/j.jmps.2014.06.011.
[113] X. Yang, P. He, H. Gao, Modeling frequency- and temperature-invariant dissipative
behaviors of randomly entangled carbon nanotube networks under cyclic loading.
Nano Res. 4 (12) (2011) 1191–1198, https://doi.org/10.1007/s12274-011-0169-y.
[114] G.H. Bratzel, S.W. Cranford, H. Espinosa, M.J. Buehler, Bioinspired noncovalently
crosslinked “fuzzy” carbon nanotube bundles with superior toughness and strength.
J. Mater. Chem. 20 (46) (2010) 10465–10474, https://doi.org/10.1039/c0jm01877e.
[115] R. Mirzaeifar, Z. Qin, M.J. Buehler, Mesoscale mechanics of twisting carbon nanotube
yarns. Nanoscale 7 (12) (2015) 5435–5445, https://doi.org/10.1039/ c4nr06669c.
[116] B. Xie, Y. Liu, Y. Ding, Q. Zheng, Z. Xu, Mechanics of carbon nanotube networks:
microstructural evolution and optimal design. Soft Matter 7 (21) (2011) 10039–10047,
https://doi.org/10.1039/c1sm06034a.
[117] M. Xu, D.N. Futaba, T. Yamada, M. Yumura, K. Hata, Carbon nanotubes with
temperature-invariant viscoelasticity from -196° to 1000 °C. Science 330 (6009)
(2010) 1364–1368, https://doi.org/10.1126/science.1194865.
[118] Q. Liu, M. Li, Y. Gu, S. Wang, Y. Zhang, Q. Li, L. Gao, Z. Zhang, Interlocked CNT
networks with high damping and storage modulus. Carbon 86 (2015) 46–53, https://
doi.org/10.1016/j.carbon.2015.01.014.
[119] Y. Won, Y. Gao, M.A. Panzer, R. Xiang, S. Maruyama, T.W. Kenny, W. Cai, K.E. Good-
son, Zipping, entanglement, and the elastic modulus of aligned single-walled carbon
nanotube films. Proc. Natl. Acad. Sci. U. S. A. 110 (51) (2013) 20426–20430, https://
doi.org/10.1073/pnas.1312253110.
[120] A. Rao, S. Tawfick, M. Bedewy, A.J. Hart, Morphology-dependent load transfer gov-
erns the strength and failure mechanism of carbon nanotube yarns. Extreme Mech.
Lett. 9 (2016) 55–65, https://doi.org/10.1016/j.eml.2016.05.003.
[121] E. Gao, W. Lu, Z. Xu, Strength loss of carbon nanotube fibres explained in a three-
level hierarchical model. Carbon 138 (2018) 134–142, https://doi.org/10.1016/j.
carbon.2018.05.052.
[122] Y. Jung, Y.S. Cho, J.W. Lee, J.Y. Oh, C.R. Park, How can we make carbon nanotube
yarn stronger? Compos. Sci. Technol. 166 (2018) 95–108, https://doi.org/10.1016/j.
compscitech.2018.02.010.
[123] Y. Han, X. Zhang, X. Yu, J. Zhao, S. Li, F. Liu, P. Gao, Y. Zhang, T. Zhao, Q. Li,
Bio-inspired aggregation control of carbon nanotubes for ultra-strong composites.
Sci. Rep. 5 (2015) 11533, https://doi.org/10.1038/srep11533.