Page 220 - Carbon Nanotube Fibres and Yarns
P. 220

210   Carbon Nanotube Fibers and Yarns


            [109]  M.J. Buehler, Mesoscale modeling of mechanics of carbon nanotubes: self- assembly,
               self-folding, and fracture. J. Mater. Res. 21 (11) (2006) 2855–2869,  https://doi.
               org/10.1557/jmr.2006.0347.
            [110]  S.W. Cranford, M.J. Buehler, In silico assembly and nanomechanical characterization
               of carbon nanotube buckypaper. Nanotechnology 21 (26) (2010) 265706, https://
               doi.org/10.1088/0957-4484/21/26/265706.
            [111]  X. Liu, W. Lu, O.M. Ayala, L.-P. Wang, A.M. Karlsson, Q. Yang, T.-W. Chou, Micro-
               structural evolution of carbon nanotube fibres: deformation and strength mechanism.
               Nanoscale 5 (5) (2013) 2002–2008, https://doi.org/10.1039/C3NR32681K.
            [112]  J.  Zhao,  J.W.  Jiang, L.  Wang, W.  Guo, T.  Rabczuk, Coarse-grained  potentials  of
                 single-walled carbon nanotubes. J. Mech. Phys. Solids 71 (2014) 197–218, https://doi.
               org/10.1016/j.jmps.2014.06.011.
            [113]  X. Yang, P. He, H. Gao, Modeling frequency- and temperature-invariant dissipative
               behaviors of randomly entangled carbon nanotube networks under cyclic loading.
               Nano Res. 4 (12) (2011) 1191–1198, https://doi.org/10.1007/s12274-011-0169-y.
            [114]  G.H. Bratzel, S.W. Cranford, H. Espinosa, M.J. Buehler, Bioinspired noncovalently
               crosslinked “fuzzy” carbon nanotube bundles with superior toughness and strength.
               J. Mater. Chem. 20 (46) (2010) 10465–10474, https://doi.org/10.1039/c0jm01877e.
            [115]  R. Mirzaeifar, Z. Qin, M.J. Buehler, Mesoscale mechanics of twisting carbon nanotube
               yarns. Nanoscale 7 (12) (2015) 5435–5445, https://doi.org/10.1039/ c4nr06669c.
            [116]  B. Xie, Y. Liu, Y. Ding, Q. Zheng, Z. Xu, Mechanics of carbon nanotube networks:
               microstructural evolution and optimal design. Soft Matter 7 (21) (2011) 10039–10047,
               https://doi.org/10.1039/c1sm06034a.
            [117]  M.  Xu,  D.N.  Futaba, T.  Yamada, M.  Yumura, K.  Hata,  Carbon  nanotubes with
                 temperature-invariant viscoelasticity from -196° to 1000 °C. Science 330 (6009)
               (2010) 1364–1368, https://doi.org/10.1126/science.1194865.
            [118]  Q. Liu, M. Li, Y. Gu, S. Wang, Y. Zhang, Q. Li, L. Gao, Z. Zhang, Interlocked CNT
               networks with high damping and storage modulus. Carbon 86 (2015) 46–53, https://
               doi.org/10.1016/j.carbon.2015.01.014.
            [119]  Y. Won, Y. Gao, M.A. Panzer, R. Xiang, S. Maruyama, T.W. Kenny, W. Cai, K.E. Good-
               son, Zipping, entanglement, and the elastic modulus of aligned single-walled carbon
               nanotube films. Proc. Natl. Acad. Sci. U. S. A. 110 (51) (2013) 20426–20430, https://
               doi.org/10.1073/pnas.1312253110.
            [120]  A. Rao, S. Tawfick, M. Bedewy, A.J. Hart, Morphology-dependent load transfer gov-
               erns the strength and failure mechanism of carbon nanotube yarns. Extreme Mech.
               Lett. 9 (2016) 55–65, https://doi.org/10.1016/j.eml.2016.05.003.
            [121]  E. Gao, W. Lu, Z. Xu, Strength loss of carbon nanotube fibres explained in a three-
               level  hierarchical  model.  Carbon  138  (2018)  134–142,  https://doi.org/10.1016/j.
               carbon.2018.05.052.
            [122]  Y. Jung, Y.S. Cho, J.W. Lee, J.Y. Oh, C.R. Park, How can we make carbon nanotube
               yarn stronger? Compos. Sci. Technol. 166 (2018) 95–108, https://doi.org/10.1016/j.
               compscitech.2018.02.010.
            [123]  Y. Han, X. Zhang, X. Yu, J. Zhao, S. Li, F. Liu, P. Gao, Y. Zhang, T. Zhao, Q. Li,
               Bio-inspired aggregation control of carbon nanotubes for ultra-strong composites.
               Sci. Rep. 5 (2015) 11533, https://doi.org/10.1038/srep11533.
   215   216   217   218   219   220   221   222   223   224   225