Page 219 - Carbon Nanotube Fibres and Yarns
P. 219

Mechanics modeling of carbon nanotube yarns   209


                [93]  D. Qian, W.K. Liu, R.S. Ruoff, Load transfer mechanism in carbon nanotube ropes.
                  Compos. Sci. Technol. 63 (11) (2003) 1561–1569, https://doi.org/10.1016/S0266-
                  3538(03)00064-2.
                [94]  O. Suekane, A. Nagataki, H. Mori, Y. Nakayama, Static friction force of carbon na-
                  notube surfaces. Appl. Phys. Express 1 (6) (2008) 064001, https://doi.org/10.1143/
                  APEX.1.064001.
                [95]  J.T. Paci, A. Furmanchuk, H.D. Espinosa, G.C. Schatz, Shear and friction between car-
                  bon nanotubes in bundles and yarns. Nano Lett. 14 (11) (2014) 6138–6147, https://
                  doi.org/10.1021/nl502210r.
                [96]  X.  Zhang, Q.  Li, Enhancement of friction between carbon nanotubes: an effi-
                  cient strategy  to strengthen  fibres. ACS  Nano 4 (1) (2010)  312–316,  https://doi.
                  org/10.1021/nn901515j.
                [97]  W. Ma, L. Liu, Z. Zhang, R. Yang, G. Liu, T. Zhang, X. An, X. Yi, Y. Ren, Z. Niu,
                  J. Li, H. Dong, W. Zhou, P.M. Ajayan, S. Xie, High-strength composite fibres: realiz-
                  ing true potential of carbon nanotubes in polymer matrix through continuous retic-
                  ulate architecture and molecular level couplings. Nano Lett. 9 (8) (2009) 2855–2861,
                  https://doi.org/10.1021/nl901035v.
                [98]  S. Ryu, Y. Lee, J.-W. Hwang, S. Hong, C. Kim, T.G. Park, H. Lee, S.H. Hong, High-
                  strength  carbon  nanotube  fibres  fabricated  by infiltration  and curing of  mussel-
                  inspired catecholamine polymer. Adv. Mater. 23 (17) (2011) 1971–1975, https://doi.
                  org/10.1002/adma.201004228.
                [99]  S. Ryu, J.B. Chou, K. Lee, D. Lee, S.H. Hong, R. Zhao, H. Lee, S.-g. Kim, Direct
                  insulation-to-conduction transformation of adhesive catecholamine for simultaneous
                  increases of electrical conductivity and mechanical strength of CNT fibres. Adv. Ma-
                  ter. 27 (21) (2015) 3250–3255, https://doi.org/10.1002/adma.201500914.
                [100]  K. Liu, Y. Sun, X. Lin, R. Zhou, J. Wang, S. Fan, K. Jiang, Scratch-resistant, highly
                  conductive, and high-strength carbon nanotube-based composite yarns. ACS Nano 4
                  (10) (2010) 5827–5834, https://doi.org/10.1021/nn1017318.
                [101]  S.J.V. Frankland, V.M. Harik, Analysis of carbon nanotube pull-out from a polymer
                  matrix. Surf. Sci. 525 (1–3) (2003) L103–L108,  https://doi.org/10.1016/S0039-
                  6028(02)02532-3.
                [102]  Y. Li, Y. Liu, X. Peng, C. Yan, S. Liu, N. Hu, Pull-out simulations on interfacial prop-
                  erties of carbon nanotube-reinforced polymer nanocomposites. Comput. Mater. Sci.
                  50 (6) (2011) 1854–1860, https://doi.org/10.1016/j.commatsci.2011.01.029.
                [103]  B. Arash, Q. Wang, V.K. Varadan, Mechanical properties of carbon nanotube/polymer
                  composites. Sci. Rep. 4 (2014) 6479, https://doi.org/10.1038/srep06479.
                [104]  X. Zhang, Sliding friction at poly(vinyl alcohol)-modified carbon nanotube inter-
                  faces. Mater. Res. Express 5 (1) (2018) 015007, https://doi.org/10.1088/2053-1591/
                  aaa0b2.
                [105]  A.M.  Beese,  S.  Sarkar, A.  Nair,  M.  Naraghi,  Z.  An, A.  Moravsky,  R.O.  Loutfy,
                  M.J. Buehler, S.T. Nguyen, H.D. Espinosa, Bio-inspired carbon nanotube-polymer
                  composite yarns with hydrogen bond-mediated lateral interactions. ACS Nano 7 (4)
                  (2013) 3434–3446, https://doi.org/10.1021/nn400346r.
                [106]  A. Kis, G. Csányi, J.-P. Salvetat, T.-N. Lee, E. Couteau, A.J. Kulik, W. Benoit, J. Brug-
                  ger, L. Forró, Reinforcement of single-walled carbon nanotube bundles by intertube
                  bridging. Nat. Mater. 3 (3) (2004) 153–157, https://doi.org/10.1038/nmat1076.
                [107]  C.F. Cornwell, C.R. Welch, Very-high-strength (60-GPa) carbon nanotube fibre de-
                  sign based on molecular dynamics simulations. J. Chem. Phys. 134 (20) (2011) 204708,
                  https://doi.org/10.1063/1.3594197.
                [108]  T. Chang, H. Gao, Size-dependent elastic properties of a single-walled carbon nano-
                  tube via a molecular mechanics model. J. Mech. Phys. Solids 51 (6) (2003) 1059–1074,
                  https://doi.org/10.1016/S0022-5096(03)00006-1.
   214   215   216   217   218   219   220   221   222   223   224