Page 219 - Carbon Nanotube Fibres and Yarns
P. 219
Mechanics modeling of carbon nanotube yarns 209
[93] D. Qian, W.K. Liu, R.S. Ruoff, Load transfer mechanism in carbon nanotube ropes.
Compos. Sci. Technol. 63 (11) (2003) 1561–1569, https://doi.org/10.1016/S0266-
3538(03)00064-2.
[94] O. Suekane, A. Nagataki, H. Mori, Y. Nakayama, Static friction force of carbon na-
notube surfaces. Appl. Phys. Express 1 (6) (2008) 064001, https://doi.org/10.1143/
APEX.1.064001.
[95] J.T. Paci, A. Furmanchuk, H.D. Espinosa, G.C. Schatz, Shear and friction between car-
bon nanotubes in bundles and yarns. Nano Lett. 14 (11) (2014) 6138–6147, https://
doi.org/10.1021/nl502210r.
[96] X. Zhang, Q. Li, Enhancement of friction between carbon nanotubes: an effi-
cient strategy to strengthen fibres. ACS Nano 4 (1) (2010) 312–316, https://doi.
org/10.1021/nn901515j.
[97] W. Ma, L. Liu, Z. Zhang, R. Yang, G. Liu, T. Zhang, X. An, X. Yi, Y. Ren, Z. Niu,
J. Li, H. Dong, W. Zhou, P.M. Ajayan, S. Xie, High-strength composite fibres: realiz-
ing true potential of carbon nanotubes in polymer matrix through continuous retic-
ulate architecture and molecular level couplings. Nano Lett. 9 (8) (2009) 2855–2861,
https://doi.org/10.1021/nl901035v.
[98] S. Ryu, Y. Lee, J.-W. Hwang, S. Hong, C. Kim, T.G. Park, H. Lee, S.H. Hong, High-
strength carbon nanotube fibres fabricated by infiltration and curing of mussel-
inspired catecholamine polymer. Adv. Mater. 23 (17) (2011) 1971–1975, https://doi.
org/10.1002/adma.201004228.
[99] S. Ryu, J.B. Chou, K. Lee, D. Lee, S.H. Hong, R. Zhao, H. Lee, S.-g. Kim, Direct
insulation-to-conduction transformation of adhesive catecholamine for simultaneous
increases of electrical conductivity and mechanical strength of CNT fibres. Adv. Ma-
ter. 27 (21) (2015) 3250–3255, https://doi.org/10.1002/adma.201500914.
[100] K. Liu, Y. Sun, X. Lin, R. Zhou, J. Wang, S. Fan, K. Jiang, Scratch-resistant, highly
conductive, and high-strength carbon nanotube-based composite yarns. ACS Nano 4
(10) (2010) 5827–5834, https://doi.org/10.1021/nn1017318.
[101] S.J.V. Frankland, V.M. Harik, Analysis of carbon nanotube pull-out from a polymer
matrix. Surf. Sci. 525 (1–3) (2003) L103–L108, https://doi.org/10.1016/S0039-
6028(02)02532-3.
[102] Y. Li, Y. Liu, X. Peng, C. Yan, S. Liu, N. Hu, Pull-out simulations on interfacial prop-
erties of carbon nanotube-reinforced polymer nanocomposites. Comput. Mater. Sci.
50 (6) (2011) 1854–1860, https://doi.org/10.1016/j.commatsci.2011.01.029.
[103] B. Arash, Q. Wang, V.K. Varadan, Mechanical properties of carbon nanotube/polymer
composites. Sci. Rep. 4 (2014) 6479, https://doi.org/10.1038/srep06479.
[104] X. Zhang, Sliding friction at poly(vinyl alcohol)-modified carbon nanotube inter-
faces. Mater. Res. Express 5 (1) (2018) 015007, https://doi.org/10.1088/2053-1591/
aaa0b2.
[105] A.M. Beese, S. Sarkar, A. Nair, M. Naraghi, Z. An, A. Moravsky, R.O. Loutfy,
M.J. Buehler, S.T. Nguyen, H.D. Espinosa, Bio-inspired carbon nanotube-polymer
composite yarns with hydrogen bond-mediated lateral interactions. ACS Nano 7 (4)
(2013) 3434–3446, https://doi.org/10.1021/nn400346r.
[106] A. Kis, G. Csányi, J.-P. Salvetat, T.-N. Lee, E. Couteau, A.J. Kulik, W. Benoit, J. Brug-
ger, L. Forró, Reinforcement of single-walled carbon nanotube bundles by intertube
bridging. Nat. Mater. 3 (3) (2004) 153–157, https://doi.org/10.1038/nmat1076.
[107] C.F. Cornwell, C.R. Welch, Very-high-strength (60-GPa) carbon nanotube fibre de-
sign based on molecular dynamics simulations. J. Chem. Phys. 134 (20) (2011) 204708,
https://doi.org/10.1063/1.3594197.
[108] T. Chang, H. Gao, Size-dependent elastic properties of a single-walled carbon nano-
tube via a molecular mechanics model. J. Mech. Phys. Solids 51 (6) (2003) 1059–1074,
https://doi.org/10.1016/S0022-5096(03)00006-1.