Page 215 - Carbon Nanotube Fibres and Yarns
P. 215
Mechanics modeling of carbon nanotube yarns 205
[30] J. Jia, J. Zhao, G. Xu, J. Di, Z. Yong, Y. Tao, C. Fang, Z. Zhang, X. Zhang, L. Zheng,
Q. Li, A comparison of the mechanical properties of fibres spun from different
carbon nanotubes. Carbon 49 (4) (2011) 1333–1339, https://doi.org/10.1016/j.car-
bon.2010.11.054.
[31] C. Fang, J. Zhao, J. Jia, Z. Zhang, X. Zhang, Q. Li, Enhanced carbon nano-
tube fibres by polyimide. Appl. Phys. Lett. 97 (18) (2010) 181906, https://doi.
org/10.1063/1.3511451.
[32] S. Li, X. Zhang, J. Zhao, F. Meng, G. Xu, Z. Yong, J. Jia, Z. Zhang, Q. Li, Enhancement
of carbon nanotube fibres using different solvents and polymers. Compos. Sci. Tech-
nol. 72 (12) (2012) 1402–1407, https://doi.org/10.1016/j.compscitech.2012.05.013.
[33] F. Meng, J. Zhao, Y. Ye, X. Zhang, Q. Li, Carbon nanotube fibres for electrochemical
applications: effect of enhanced interfaces by an acid treatment. Nanoscale 4 (23)
(2012) 7464–7468, https://doi.org/10.1039/c2nr32332j.
[34] F. Meng, X. Zhang, R. Li, J. Zhao, X. Xuan, X. Wang, J. Zou, Q. Li, Electro-induced
mechanical and thermal responses of carbon nanotube fibres. Adv. Mater. 26 (16)
(2014) 2480–2485, https://doi.org/10.1002/adma.201305123.
[35] C. Jiang, X. Yang, J. Zhao, Q. Li, K.-Q. Zhang, X. Zhang, Q. Li, Densifying carbon
nanotubes on assembly surface by the self-contraction of silk fibroin. Appl. Surf. Sci.
436 (2018) 66–72, https://doi.org/10.1016/j.apsusc.2017.12.005.
[36] J. Zhao, X. Zhang, Z. Pan, Q. Li, Wide-range tunable dynamic property of
carbon-nanotube-based fibres. Adv. Mater. Interfaces 2 (10) (2015) 1500093, https://
doi.org/10.1002/admi.201500093.
[37] J. Zhao, Q. Li, B. Gao, X. Wang, J. Zou, S. Cong, X. Zhang, Z. Pan, Q. Li,
Vibration-assisted infiltration of nano-compounds to strengthen and functionalize
carbon nanotube fibres. Carbon 101 (2016) 114–119, https://doi.org/10.1016/j.car-
bon.2016.01.085.
[38] J. Zhao, F. Wang, X. Zhang, L. Liang, X. Yang, Q. Li, X. Zhang, Vibration damping of
carbon nanotube assembly materials. Adv. Eng. Mater. 20 (3) (2018) 1700647, https://
doi.org/10.1002/adem.201700647.
[39] M.D. Lima, S. Fang, X. Lepró, C. Lewis, R. Ovalle-Robles, J. Carretero-González,
E. Castillo-Martínez, M.E. Kozlov, J. Oh, N. Rawat, C.S. Haines, M.H. Haque,
V. Aare, S. Stoughton, A.A. Zakhidov, R.H. Baughman, Biscrolling nanotube sheets
and functional guests into yarns. Science 331 (6013) (2011) 51–55, https://doi.
org/10.1126/science.1195912.
[40] T. Chen, S. Wang, Z. Yang, Q. Feng, X. Sun, L. Li, Z.-S. Wang, H. Peng, Flexible,
light-weight, ultrastrong, and semiconductive carbon nanotube fibres for a highly
efficient solar cell. Angew. Chem. Int. Ed. 50 (8) (2011) 1815–1819, https://doi.
org/10.1002/anie.201003870.
[41] T. Chen, Z. Cai, Z. Yang, L. Li, X. Sun, T. Huang, A. Yu, H.G. Kia, H. Peng,
Nitrogen-doped carbon nanotube composite fibre with a core-sheath structure for
novel electrodes. Adv. Mater. 23 (40) (2011) 4620–4625, https://doi.org/10.1002/
adma.201102200.
[42] T. Chen, L. Qiu, Z. Cai, F. Gong, Z. Yang, Z. Wang, H. Peng, Intertwined aligned
carbon nanotube fibre based dye-sensitized solar cells. Nano Lett. 12 (5) (2012) 2568–
2572, https://doi.org/10.1021/nl300799d.
[43] T. Chen, L. Qiu, Z. Yang, Z. Cai, J. Ren, H. Li, H. Lin, X. Sun, H. Peng, An integrated
“energy wire” for both photoelectric conversion and energy storage. Angew. Chem.
Int. Ed. 51 (48) (2012) 11977–11980, https://doi.org/10.1002/anie.201207023.
[44] J. Ren, L. Li, C. Chen, X. Chen, Z. Cai, L. Qiu, Y. Wang, X. Zhu, H. Peng, Twist-
ing carbon nanotube fibres for both wire-shaped micro-supercapacitor and
micro-battery. Adv. Mater. 25 (8) (2013) 1155–1159, https://doi.org/10.1002/
adma.201203445.