Page 251 - Carbon Nanotube Fibres and Yarns
P. 251

Sensors based on CNT yarns   241


                [71]  J. Vavro, J.M. Kikkawa, J.E. Fischer, Metal-insulator transition in doped single-wall
                 carbon nanotubes, Phys. Rev. B 71 (2005) 155410.
                [72]  K. Yanagi, H. Udoguchi, S. Sagitani, Y. Oshima, T. Takenobu, H. Kataura, et al., Trans-
                 port mechanisms in metallic and semiconducting single-wall carbon nanotube net-
                 works, ACS Nano 4 (2010) 4027.
                [73]  A.B. Kaiser, G. Dusberg, S. Roth, Heterogeneous model for conduction in carbon
                 nanotubes, Phys. Rev. B 57 (1998) 1418.
                [74]  J. Steinmetz, M. Glerup, M. Paillet, P. Bernier, M. Holzinger, Production of pure na-
                 notube fibers using a modified wet-spinning method, Carbon 43 (2005) 2397.
                [75]  S. Badaire, V. Pichot, C. Zakri, P. Poulin, P. Launois, J. Vavro, et al., Correlation of prop-
                 erties with preferred orientation in coagulated and stretch-aligned single-wall carbon
                 nanotubes, J. Appl. Phys. 96 (2004) 7509.
                [76]  S.K. Kahng, T.S. Gates, G.D. Jefferson, Strain and temperature sensing properties of
                 multiwalled carbon nanotube yarn composites, in: NASA Technical Report, 2008.
                [77]  Z. Zhu, L. Garcia-Gancedo, A.J. Flewitt, F. Moussy, Y.L. Li, W.I. Milne, Design of car-
                 bon nanotube fiber microelectrode for glucose biosensing, J. Chem. Technol. Biotech-
                 nol. 87 (2012) 256–262.
                [78]  C. Jiang, L. Li, H. Hao, Carbon nanotube yarns for deep brain stimulation electrode,
                 IEEE Trans. Neural Syst. Rehabil. Eng. 19 (2011) 612–616.
                [79]  A.C. Schmidt, X. Wang, Y. Zhu, L.A. Sombers, Carbon nanotube yarn electrodes for
                 enhanced detection of neurotransmitter dynamics in live brain tissue, ACS Nano 7
                 (2013) 7864–7873.
                [80]  Z. Zhu, W. Song, K. Burugapalli, F. Moussy, Y.L. Li, X.H. Zhong, Nano-yarn carbon
                 nanotube fiber based enzymatic glucose biosensor, Nanotechnology 21 (2010) 165501.
                [81]  Z.  Zhu, L.  Garcia-Gancedo, A.J.  Flewitt, H.  Xie, F.  Moussy, W.I.  Milne, A critical
                 review of glucose biosensors based on carbon nanomaterials: carbon nanotubes and
                 graphene, Sensors 12 (2012) 5996–6022.
                [82]  M. Bourourou, M. Holzinger, F. Bossard, F. Hugenell, A. Maaref, S. Cosnier, Chem-
                 ically reduced electrospun polyacrilonitrile–carbon nanotube nanofibers hydrogels as
                 electrode material for bioelectrochemical applications, Carbon 87 (2015) 233–238.
                [83]  H.H. Kim, C.S. Haines, N. Li, K.J. Kim, T.J. Mun, C. Choi, Harvesting electrical en-
                 ergy from carbon nanotube yarn twist, Science 357 (2017) 773–778.
               [84]  J.A. Lee, Y.T. Kim, G.M. Spinks, D. Suh, X. Lepró, M.D. Lima, et al., All-solid-state car-
                 bon nanotube torsional and tensile artificial muscles, Nano Lett. 14 (2014) 2664–2669.
                [85]  M.S. Nisha, D.J. Greety, D. Singh, Design and development of nanocomposite with en-
                 hanced thermal and electrical property for electromagnetic interference [EMI] shield-
                 ing in aircraft’s cockpit walls, Mater. Today: Proc. 5 (2018) 8147–8151.
   246   247   248   249   250   251   252   253   254   255   256